Lidar-based models using LCMAP primary and secondary classes as predictors. 2021-08-05
Last iteration of these models: 2021-05-30
RF (ranger) | GBM (LightGBM) | SVM (kernlab) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|---|
RMSE | 37.591 | 37.232 | 36.854 | 36.723 | 36.499 |
MBE | 1.894 | 1.843 | -0.726 | 1.821 | 1.015 |
R2 | 0.771 | 0.775 | 0.780 | 0.780 | 0.785 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 9.107 85.393 91.573 149.091 425.000
Across 1000 bootstrap iterations, our ensemble model had a mean RMSE of 36.693 \(\pm\) 0.327.
RMSE | Min | Median | Max |
---|---|---|---|
Rf | 34.695 | 40.522 | 45.031 |
Lgb | 35.272 | 40.364 | 44.787 |
Svm | 34.435 | 40.756 | 64.763 |
Ensemble | 34.394 | 40.005 | 45.806 |
R2 | Min | Median | Max |
---|---|---|---|
rf | 0.681 | 0.739 | 0.797 |
lgb | 0.681 | 0.742 | 0.790 |
svm | 0.408 | 0.734 | 0.796 |
ensemble | 0.688 | 0.746 | 0.793 |
lgb rf svm
0.3370106 0.3342122 0.3287773
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = pred_values)
Residuals:
Min 1Q Median 3Q Max
-126.487 -22.287 -0.039 14.119 219.826
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.605e+00 5.866e-01 -4.440 9.04e-06 ***
rf_pred 7.367e-01 6.368e-02 11.568 < 2e-16 ***
lgb_pred 2.591e-01 7.381e-02 3.510 0.000448 ***
svm_pred 6.707e-02 4.079e-02 1.644 0.100180
rf_pred:lgb_pred -1.172e-03 3.183e-04 -3.683 0.000231 ***
rf_pred:svm_pred -1.590e-03 5.023e-04 -3.166 0.001549 **
lgb_pred:svm_pred 2.153e-03 5.963e-04 3.610 0.000306 ***
rf_pred:lgb_pred:svm_pred 2.471e-06 1.416e-06 1.745 0.080921 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 39.66 on 23492 degrees of freedom
Multiple R-squared: 0.7436, Adjusted R-squared: 0.7435
F-statistic: 9731 on 7 and 23492 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 500
$mtry
[1] 33
$min.node.size
[1] 9
$sample.fraction
[1] 0.25
$splitrule
[1] "maxstat"
$replace
[1] TRUE
$formula
agb_mgha ~ .
LGB:
$learning_rate
[1] 0.1
$nrounds
[1] 50
$num_leaves
[1] 24
$max_depth
[1] -1
$extra_trees
[1] TRUE
$min_data_in_leaf
[1] 10
$bagging_fraction
[1] 0.6
$bagging_freq
[1] 1
$feature_fraction
[1] 0.9
$min_data_in_bin
[1] 3
$lambda_l1
[1] 10
$lambda_l2
[1] 3
$force_col_wise
[1] TRUE
SVM:
$x
agb_mgha ~ .
$kernel
[1] "laplacedot"
$type
[1] "eps-svr"
$kpar
$kpar$sigma
[1] 0.001953125
$C
[1] 21
$epsilon
[1] 0.125
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Mahoney (2021, Aug. 5). CAFRI Labs: 1.2.0: This time it's LCMAP. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/120-this-time-its-lcmap/
BibTeX citation
@misc{mahoney20211.2.0:, author = {Mahoney, Mike}, title = {CAFRI Labs: 1.2.0: This time it's LCMAP}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/120-this-time-its-lcmap/}, year = {2021} }