Big Tune Map Accuracy v2 - Pooled+

Map accuracy/agreement assessment following the Riemann et. al. framework.

Lucas Johnson
2021-05-05

Description

Riemann et. al.

Previous version

Branch used to produce this document: big-tune-pooled+

Coverages included

FIA plot inclusion criteria

Masking

LCMAP Collection 1.1. data was used to develop masks for each LiDAR coverage included in the assessment, matching LCMAP products to LiDAR-AGB surfaces by year. E.g. LCMAP’s 2014 surface was used to mask the LiDAR-AGB surface for USGS_3County2014.

NOTE: Masked AGB pixels are set to 0, and included in the agreement assessment just as any other AGB pixel.

Masked classes:

Agreement Statistics (SI corrected)

Table 1: Plot:Pixel Comparison; n = 422; Avg Plots Per Hex: NA
MODEL MBE RMSE MAE R2 KS AC ACs ACu
RF 1.91 40.72 28.52 0.75 0.18 0.67 0.96 0.71
GBM 1.63 40.69 28.59 0.75 0.17 0.67 0.96 0.71
SVM 1.28 37.84 25.41 0.78 0.17 0.72 0.97 0.75
LINMOD 1.88 39.60 27.46 0.76 0.16 0.70 0.97 0.73
RMSE 1.61 39.20 27.11 0.77 0.18 0.70 0.96 0.73
Table 2: 8660 Ha Hex; n = 239; Avg Plots Per Hex: 1.77
MODEL MBE RMSE MAE R2 KS AC ACs ACu
RF 3.65 34.34 23.92 0.74 0.14 0.70 0.98 0.72
GBM 3.37 34.06 23.87 0.75 0.13 0.71 0.98 0.73
SVM 2.93 31.64 21.17 0.78 0.13 0.75 0.99 0.77
LINMOD 3.56 33.27 22.91 0.76 0.12 0.73 0.98 0.74
RMSE 3.32 32.86 22.62 0.76 0.14 0.73 0.98 0.75
Table 3: 78100 Ha Hex; n = 51; Avg Plots Per Hex: 8.27
MODEL MBE RMSE MAE R2 KS AC ACs ACu
RF 1.99 23.59 16.76 0.79 0.12 0.72 0.95 0.77
GBM 1.77 23.88 16.79 0.79 0.10 0.72 0.95 0.76
SVM 0.55 22.78 15.92 0.81 0.10 0.73 0.95 0.78
LINMOD 1.64 23.38 16.35 0.80 0.12 0.73 0.96 0.77
RMSE 1.44 23.22 16.29 0.80 0.12 0.73 0.95 0.78
Table 4: 216500 Ha Hex; n = 29; Avg Plots Per Hex: 14.55
MODEL MBE RMSE MAE R2 KS AC ACs ACu
RF 0.92 21.29 13.78 0.80 0.1 0.78 1 0.78
GBM 0.74 21.25 13.94 0.80 0.1 0.78 1 0.78
SVM 0.56 21.60 13.78 0.80 0.1 0.78 1 0.78
LINMOD 0.75 21.17 13.51 0.81 0.1 0.78 1 0.78
RMSE 0.74 21.22 13.52 0.81 0.1 0.78 1 0.78

ECDF Comparisons Across Scales - FIA Plots vs Mapped (SI corrected)

1:1 and GMFR Lines Across Scales - FIA Plots vs Mapped (SI corrected)

Aggregate AGB Estimates Across Scales (Uncorrected)

Spatial/Distribution Patterns of Local Differences (SI Corrected)

Patterns of Local Variability (SI Corrected)

Corrections

If you see mistakes or want to suggest changes, please create an issue on the source repository.

Citation

For attribution, please cite this work as

Johnson (2021, May 11). CAFRI Labs: Big Tune Map Accuracy v2 - Pooled+. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/big-tune-pooled-plus-map-accuracy/

BibTeX citation

@misc{johnson2021big,
  author = {Johnson, Lucas},
  title = {CAFRI Labs: Big Tune Map Accuracy v2 - Pooled+},
  url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/big-tune-pooled-plus-map-accuracy/},
  year = {2021}
}