Map accuracy/agreement assessment following the Riemann et. al. framework.
Branch used to produce this document: big-tune-pooled+
LCMAP Collection 1.1. data was used to develop masks for each LiDAR coverage included in the assessment, matching LCMAP products to LiDAR-AGB surfaces by year. E.g. LCMAP’s 2014 surface was used to mask the LiDAR-AGB surface for USGS_3County2014.
NOTE: Masked AGB pixels are set to 0, and included in the agreement assessment just as any other AGB pixel.
Masked classes:
MODEL | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|
RF | 1.91 | 40.72 | 28.52 | 0.75 | 0.18 | 0.67 | 0.96 | 0.71 |
GBM | 1.63 | 40.69 | 28.59 | 0.75 | 0.17 | 0.67 | 0.96 | 0.71 |
SVM | 1.28 | 37.84 | 25.41 | 0.78 | 0.17 | 0.72 | 0.97 | 0.75 |
LINMOD | 1.88 | 39.60 | 27.46 | 0.76 | 0.16 | 0.70 | 0.97 | 0.73 |
RMSE | 1.61 | 39.20 | 27.11 | 0.77 | 0.18 | 0.70 | 0.96 | 0.73 |
MODEL | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|
RF | 3.65 | 34.34 | 23.92 | 0.74 | 0.14 | 0.70 | 0.98 | 0.72 |
GBM | 3.37 | 34.06 | 23.87 | 0.75 | 0.13 | 0.71 | 0.98 | 0.73 |
SVM | 2.93 | 31.64 | 21.17 | 0.78 | 0.13 | 0.75 | 0.99 | 0.77 |
LINMOD | 3.56 | 33.27 | 22.91 | 0.76 | 0.12 | 0.73 | 0.98 | 0.74 |
RMSE | 3.32 | 32.86 | 22.62 | 0.76 | 0.14 | 0.73 | 0.98 | 0.75 |
MODEL | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|
RF | 1.99 | 23.59 | 16.76 | 0.79 | 0.12 | 0.72 | 0.95 | 0.77 |
GBM | 1.77 | 23.88 | 16.79 | 0.79 | 0.10 | 0.72 | 0.95 | 0.76 |
SVM | 0.55 | 22.78 | 15.92 | 0.81 | 0.10 | 0.73 | 0.95 | 0.78 |
LINMOD | 1.64 | 23.38 | 16.35 | 0.80 | 0.12 | 0.73 | 0.96 | 0.77 |
RMSE | 1.44 | 23.22 | 16.29 | 0.80 | 0.12 | 0.73 | 0.95 | 0.78 |
MODEL | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|
RF | 0.92 | 21.29 | 13.78 | 0.80 | 0.1 | 0.78 | 1 | 0.78 |
GBM | 0.74 | 21.25 | 13.94 | 0.80 | 0.1 | 0.78 | 1 | 0.78 |
SVM | 0.56 | 21.60 | 13.78 | 0.80 | 0.1 | 0.78 | 1 | 0.78 |
LINMOD | 0.75 | 21.17 | 13.51 | 0.81 | 0.1 | 0.78 | 1 | 0.78 |
RMSE | 0.74 | 21.22 | 13.52 | 0.81 | 0.1 | 0.78 | 1 | 0.78 |
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2021, May 11). CAFRI Labs: Big Tune Map Accuracy v2 - Pooled+. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/big-tune-pooled-plus-map-accuracy/
BibTeX citation
@misc{johnson2021big, author = {Johnson, Lucas}, title = {CAFRI Labs: Big Tune Map Accuracy v2 - Pooled+}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/big-tune-pooled-plus-map-accuracy/}, year = {2021} }