Map accuracy/agreement assessment following Riemann et. al. framework.
Branch used to produce this document: big-tune-testing+
LCMAP Collection 1.1. data was used to develop masks for each LiDAR coverage included in the assessment, matching LCMAP products to LiDAR-AGB surfaces by year. E.g. LCMAP’s 2014 surface was used to mask the LiDAR-AGB surface for USGS_3County2014.
NOTE: Masked AGB pixels are set to 0, and included in the agreement assessment just as any other AGB pixel.
Masked classes:
MODEL | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|
RF | 5.61 | 43.39 | 29.71 | 0.73 | 0.27 | 0.68 | 0.96 | 0.72 |
GBM | 5.34 | 42.82 | 29.43 | 0.74 | 0.26 | 0.68 | 0.96 | 0.72 |
SVM | 4.34 | 42.25 | 28.68 | 0.74 | 0.26 | 0.69 | 0.96 | 0.72 |
LINMOD | 5.31 | 42.65 | 29.12 | 0.74 | 0.24 | 0.69 | 0.96 | 0.73 |
RMSE | 5.11 | 42.43 | 29.10 | 0.74 | 0.27 | 0.69 | 0.96 | 0.73 |
MODEL | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|
RF | 6.26 | 40.44 | 27.92 | 0.71 | 0.24 | 0.67 | 0.97 | 0.71 |
GBM | 5.97 | 40.01 | 27.72 | 0.72 | 0.25 | 0.68 | 0.97 | 0.71 |
SVM | 5.26 | 39.39 | 27.05 | 0.73 | 0.23 | 0.68 | 0.97 | 0.71 |
LINMOD | 6.00 | 39.71 | 27.36 | 0.72 | 0.22 | 0.69 | 0.97 | 0.72 |
RMSE | 5.84 | 39.58 | 27.42 | 0.72 | 0.24 | 0.68 | 0.97 | 0.72 |
MODEL | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|
RF | 5.26 | 31.53 | 23.00 | 0.75 | 0.2 | 0.69 | 0.95 | 0.75 |
GBM | 5.02 | 32.29 | 23.00 | 0.73 | 0.2 | 0.68 | 0.95 | 0.73 |
SVM | 4.09 | 31.40 | 22.38 | 0.74 | 0.2 | 0.69 | 0.96 | 0.74 |
LINMOD | 4.84 | 31.47 | 22.67 | 0.75 | 0.2 | 0.69 | 0.95 | 0.74 |
RMSE | 4.80 | 31.56 | 22.61 | 0.74 | 0.2 | 0.69 | 0.95 | 0.74 |
MODEL | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|
RF | 3.12 | 26.51 | 19.18 | 0.78 | 0.11 | 0.76 | 0.99 | 0.77 |
GBM | 3.12 | 25.87 | 18.76 | 0.79 | 0.11 | 0.77 | 0.99 | 0.78 |
SVM | 3.15 | 26.71 | 20.22 | 0.78 | 0.11 | 0.77 | 0.99 | 0.77 |
LINMOD | 3.08 | 26.32 | 19.29 | 0.78 | 0.11 | 0.77 | 0.99 | 0.78 |
RMSE | 3.13 | 26.20 | 19.27 | 0.79 | 0.11 | 0.77 | 0.99 | 0.78 |
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2021, May 11). CAFRI Labs: Big Tune Map Accuracy v2 - Testing+. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/big-tune-testing-plus-map-accuracy/
BibTeX citation
@misc{johnson2021big, author = {Johnson, Lucas}, title = {CAFRI Labs: Big Tune Map Accuracy v2 - Testing+}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/big-tune-testing-plus-map-accuracy/}, year = {2021} }