Map accuracy/agreement assessment following Riemann et. al. framework.
Branch used to produce this document: big-tune-training
LCMAP Collection 1.1. data was used to develop masks for each LiDAR coverage included in the assessment, matching LCMAP products to LiDAR-AGB surfaces by year. E.g. LCMAP’s 2014 surface was used to mask the LiDAR-AGB surface for USGS_3County2014.
NOTE: Masked AGB pixels are set to 0, and included in the agreement assessment just as any other AGB pixel.
Masked classes:
MODEL | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|
RF | -1.31 | 38.25 | 27.48 | 0.73 | 0.11 | 0.66 | 0.97 | 0.69 |
GBM | -1.60 | 38.76 | 27.86 | 0.73 | 0.11 | 0.65 | 0.96 | 0.68 |
SVM | -1.37 | 33.55 | 22.57 | 0.80 | 0.10 | 0.75 | 0.98 | 0.77 |
LINMOD | -1.09 | 36.75 | 26.03 | 0.76 | 0.12 | 0.69 | 0.97 | 0.72 |
RMSE | -1.43 | 36.16 | 25.38 | 0.76 | 0.12 | 0.70 | 0.97 | 0.73 |
MODEL | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|
RF | -0.22 | 32.66 | 24.44 | 0.77 | 0.11 | 0.71 | 0.98 | 0.74 |
GBM | -0.42 | 32.98 | 24.60 | 0.77 | 0.10 | 0.71 | 0.97 | 0.73 |
SVM | 0.04 | 27.61 | 19.55 | 0.84 | 0.09 | 0.81 | 0.99 | 0.82 |
LINMOD | 0.02 | 31.11 | 22.96 | 0.80 | 0.11 | 0.74 | 0.98 | 0.76 |
RMSE | -0.20 | 30.42 | 22.33 | 0.81 | 0.10 | 0.76 | 0.98 | 0.78 |
MODEL | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|
RF | 1.15 | 24.07 | 18.78 | 0.79 | 0.08 | 0.73 | 0.97 | 0.77 |
GBM | 1.05 | 24.30 | 19.06 | 0.79 | 0.10 | 0.73 | 0.97 | 0.76 |
SVM | -0.04 | 22.17 | 16.88 | 0.83 | 0.10 | 0.76 | 0.96 | 0.80 |
LINMOD | 0.97 | 23.48 | 18.24 | 0.80 | 0.08 | 0.75 | 0.97 | 0.78 |
RMSE | 0.73 | 23.19 | 18.09 | 0.81 | 0.10 | 0.75 | 0.96 | 0.78 |
MODEL | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|
RF | 2.79 | 15.43 | 13.05 | 0.90 | 0.15 | 0.88 | 0.98 | 0.91 |
GBM | 2.61 | 16.01 | 13.91 | 0.89 | 0.15 | 0.87 | 0.98 | 0.89 |
SVM | 2.64 | 14.19 | 11.49 | 0.91 | 0.15 | 0.91 | 0.99 | 0.92 |
LINMOD | 2.67 | 14.76 | 12.53 | 0.91 | 0.15 | 0.90 | 0.98 | 0.91 |
RMSE | 2.68 | 14.92 | 12.81 | 0.91 | 0.15 | 0.89 | 0.98 | 0.91 |
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2021, May 11). CAFRI Labs: Big Tune Map Accuracy v2 - Training. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/big-tune-training-map-accuracy/
BibTeX citation
@misc{johnson2021big, author = {Johnson, Lucas}, title = {CAFRI Labs: Big Tune Map Accuracy v2 - Training}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/big-tune-training-map-accuracy/}, year = {2021} }