Carbon Conversion - Take 4: Forest Only

Modeling forest carbon pools as a function of aboveground biomass and static climate and topographic predictors.

Lucas Johnson
2022-07-16

Changes

This round differs from the last iteration in the following ways:

AGC Model

Random Forest Model - Test Set 1:1

Params

$formula
agc ~ .

$num.trees
[1] 1750

$mtry
[1] 13

$min.node.size
[1] 10

$replace
[1] TRUE

$sample.fraction
[1] 0.85

PC Regression - LOO-CV 1:1

Params

PC Regression - Test Set 1:1

Params

Elastic Net Regression - Test set 1:1

Params

Test Set Accuracy

RF PC - LOO-CV PC Elastic Net
RMSE 25.955 26.515 27.023 26.601
% RMSE 38.571 39.902 40.158 39.531
MAE 20.695 20.994 21.532 21.141
% MAE 30.754 31.593 31.998 31.417
MBE 0.153 -0.020 -0.982 -1.246
R2 0.370 0.346 0.317 0.338
% Improvement 20.705 19.129 17.443 18.732

BGC Model

Random Forest Model - Test Set 1:1

Params

$formula
bgc ~ .

$num.trees
[1] 2000

$mtry
[1] 14

$min.node.size
[1] 1

$replace
[1] TRUE

$sample.fraction
[1] 0.8

PC Regression - LOO-CV 1:1

Params

PC Regression - Test Set 1:1

Params

Elastic Net Regression - Test set 1:1

Params

Test Set Accuracy

RF PC - LOO-CV PC Elastic Net
RMSE 5.093 5.209 5.299 5.237
% RMSE 37.109 38.341 38.607 38.157
MAE 4.076 4.134 4.242 4.182
% MAE 29.701 30.429 30.908 30.470
MBE 0.045 -0.003 -0.179 -0.207
R2 0.347 0.326 0.293 0.310
% Improvement 19.292 17.949 16.032 17.012

Deadwood C Model

Random Forest Model - Test Set 1:1

Params

$formula
deadwood ~ .

$num.trees
[1] 250

$mtry
[1] 3

$min.node.size
[1] 7

$replace
[1] FALSE

$sample.fraction
[1] 1

PC Regression - LOO-CV 1:1

Params

PC Regression - Test Set 1:1

Params

Elastic Net Regression - Test set 1:1

Params

Test Set Accuracy

RF PC - LOO-CV PC Elastic Net
RMSE 5.889 6.570 6.442 6.278
% RMSE 77.954 80.943 85.273 83.105
MAE 4.494 4.795 4.888 4.687
% MAE 59.491 59.082 64.708 62.038
MBE 0.905 0.008 0.858 0.019
R2 0.176 0.114 0.014 0.063
% Improvement 9.694 5.946 1.215 3.727

Litter C models

PC Regression - LOO-CV 1:1

Params

PC Regression - Test Set 1:1

Params

Elastic Net Regression - Test Set 1:1

Params

Test-set Accuracy

PC - LOO-CV PC Elastic Net
RMSE 11.302 15.700 8.341
% RMSE 80.829 92.551 49.174
MAE 7.915 10.213 6.608
% MAE 56.603 60.206 38.953
MBE -0.570 -6.652 0.000
R2 -0.125 -0.639 0.537
% Improvement -5.620 -25.731 33.197

Soil C model

PC Regression - LOO-CV 1:1

Params

PC Regression - Test Set 1:1

Params

Elastic Net Regression - Test Set 1:1

Params

Test-set Accuracy

PC - LOO-CV PC Elastic Net
RMSE 68.492 47.615 41.264
% RMSE 64.175 42.454 36.792
MAE 40.899 34.778 29.609
% MAE 38.321 31.009 26.400
MBE 0.092 0.032 0.000
R2 -0.053 0.360 0.519
% Improvement -1.874 22.363 32.718

Corrections

If you see mistakes or want to suggest changes, please create an issue on the source repository.

Citation

For attribution, please cite this work as

Johnson (2022, Aug. 14). CAFRI Labs: Carbon Conversion - Take 4: Forest Only. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/carbon-conversion-take-4-forest-only/

BibTeX citation

@misc{johnson2022carbon,
  author = {Johnson, Lucas},
  title = {CAFRI Labs: Carbon Conversion - Take 4: Forest Only},
  url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/carbon-conversion-take-4-forest-only/},
  year = {2022}
}