Changes
This round differs from the last
iteration in the following ways:
- True AGB values (measured on plots) used in place of Landsat-derived
AGB as a predictor. This document should serve as a
comparison/alternative to the previous version.
AGC Model
- \(n\) train: 1838
- \(n\) test: 473
- Predictors: agb, mag, nbr, delta_nbr, ndvi, nsds, delta_nsds, tcb,
delta_tcb, tcg, delta_tcg, tcw, delta_tcw, yod, dem, slope, aspect, twi,
tmin, tmax, precip, chm, lcpri4, lcpri6, lcpri2, lcpri3, lcsec3, lcsec2,
lcsec1, lcsec4
Random Forest Model - Test
Set 1:1
Params
$formula
agc ~ .
$num.trees
[1] 1750
$mtry
[1] 20
$min.node.size
[1] 2
$replace
[1] FALSE
$sample.fraction
[1] 0.9
PC Regression - Test Set 1:1
Params
- Number of principle components: 23
Elastic Net Regression -
Test set 1:1
Params
- alpha: 1
- lambda: 0.9461285
Test Set Accuracy
|
RF
|
PC
|
Elastic Net
|
RMSE
|
27.609
|
27.633
|
27.686
|
% RMSE
|
41.029
|
41.064
|
41.144
|
MAE
|
21.766
|
21.778
|
21.843
|
% MAE
|
32.345
|
32.364
|
32.460
|
MBE
|
-3.168
|
-3.184
|
-3.092
|
R2
|
0.287
|
0.286
|
0.283
|
% Improvement
|
15.652
|
15.580
|
15.416
|
BGC Model
- \(n\) train: 1838
- \(n\) test: 470
- Predictors: agb, mag, nbr, delta_nbr, ndvi, nsds, delta_nsds, tcb,
delta_tcb, tcg, delta_tcg, tcw, delta_tcw, yod, dem, slope, aspect, twi,
tmin, tmax, precip, chm, lcpri4, lcpri6, lcpri2, lcpri3, lcsec3, lcsec2,
lcsec1, lcsec4
Random Forest Model - Test
Set 1:1
Params
$formula
bgc ~ .
$num.trees
[1] 450
$mtry
[1] 20
$min.node.size
[1] 2
$replace
[1] FALSE
$sample.fraction
[1] 1
PC Regression - Test Set 1:1
Params
- Number of principle components: 23
Elastic Net Regression -
Test set 1:1
Params
- alpha: 0.45
- lambda: 0.017364
Test Set Accuracy
|
RF
|
PC
|
Elastic Net
|
RMSE
|
5.411
|
5.424
|
5.427
|
% RMSE
|
39.428
|
39.519
|
39.542
|
MAE
|
4.296
|
4.294
|
4.297
|
% MAE
|
31.299
|
31.284
|
31.306
|
MBE
|
-0.578
|
-0.639
|
-0.629
|
R2
|
0.263
|
0.260
|
0.259
|
% Improvement
|
14.247
|
14.049
|
14.001
|
Deadwood C Model
- 5 filtered
- Outlier threshold = [(5 * IQR) + 0.75th percentile] = 54.941
- \(n\) train: 374
- \(n\) test: 97
- Predictors: agb, mag, nbr, delta_nbr, ndvi, nsds, delta_nsds, tcb,
delta_tcb, tcg, delta_tcg, tcw, delta_tcw, yod, dem, slope, aspect, twi,
tmin, tmax, precip, chm, lcpri4, lcpri6, lcsec2, lcsec3, lcsec1,
lcsec4
Random Forest Model - Test
Set 1:1
Params
$formula
deadwood ~ .
$num.trees
[1] 60
$mtry
[1] 3
$min.node.size
[1] 6
$replace
[1] FALSE
$sample.fraction
[1] 1
PC Regression - Test Set 1:1
Params
- Number of principle components: 22
Elastic Net Regression -
Test set 1:1
Params
- alpha: 0.4
- lambda: 0.2570002
Test Set Accuracy
|
RF
|
PC
|
Elastic Net
|
RMSE
|
5.866
|
6.573
|
6.321
|
% RMSE
|
77.653
|
87.005
|
83.679
|
MAE
|
4.488
|
5.004
|
4.697
|
% MAE
|
59.413
|
66.241
|
62.177
|
MBE
|
0.909
|
0.747
|
0.018
|
R2
|
0.182
|
-0.026
|
0.051
|
% Improvement
|
10.043
|
-0.791
|
3.061
|
Litter C models
- \(n\) train: 90
- \(n\) test: 28
- Predictors: agb, mag, nbr, delta_nbr, ndvi, nsds, delta_nsds, tcb,
delta_tcb, tcg, delta_tcg, tcw, delta_tcw, yod, dem, slope, aspect, twi,
tmin, tmax, precip, chm, lcpri4, lcsec3, lcsec1
PC Regression - Test Set 1:1
Params
- Number of principle components: 19
Elastic Net Regression -
Test Set 1:1
Params
- alpha: 0.15
- lambda: 4.3322608
Test-set Accuracy
|
PC
|
Elastic Net
|
RMSE
|
14.389
|
8.428
|
% RMSE
|
84.827
|
49.682
|
MAE
|
9.571
|
6.731
|
% MAE
|
56.421
|
39.682
|
MBE
|
-6.848
|
0.000
|
R2
|
-0.377
|
0.528
|
% Improvement
|
-15.238
|
32.507
|
Soil C model
- Predictors: agb, mag, nbr, delta_nbr, ndvi, nsds, delta_nsds, tcb,
delta_tcb, tcg, delta_tcg, tcw, delta_tcw, yod, dem, slope, aspect, twi,
tmin, tmax, precip, chm, lcpri4, lcsec3
- \(n\) train: 53
- \(n\) test: 17
PC Regression - Test Set 1:1
Params
- Number of principle components: 18
Elastic Net Regression -
Test Set 1:1
Params
- alpha: 1
- lambda: 7.609536
Test-set Accuracy
|
PC
|
Elastic Net
|
RMSE
|
49.386
|
42.406
|
% RMSE
|
44.033
|
37.810
|
MAE
|
37.958
|
30.282
|
% MAE
|
33.843
|
26.999
|
MBE
|
1.879
|
0.000
|
R2
|
0.311
|
0.492
|
% Improvement
|
19.476
|
30.856
|
Corrections
If you see mistakes or want to suggest changes, please create an issue on the source repository.
Citation
For attribution, please cite this work as
Johnson (2022, Aug. 14). CAFRI Labs: Carbon Conversion - Take 4b: True AGB. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/carbon-conversion-take-4b-true-agb/
BibTeX citation
@misc{johnson2022carbon,
author = {Johnson, Lucas},
title = {CAFRI Labs: Carbon Conversion - Take 4b: True AGB},
url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/carbon-conversion-take-4b-true-agb/},
year = {2022}
}