Holdout set accuracy for Component Bias Correction, 2021-04-26
Last iteration of these models: 2021-02-02
RF (ranger) | GBM (LightGBM) | SVM (kernlab) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|---|
RMSE | 35.515 | 35.480 | 36.671 | 35.482 | 34.949 |
MBE | 3.165 | 3.789 | 3.552 | 3.190 | 3.502 |
R2 | 0.791 | 0.792 | 0.780 | 0.791 | 0.798 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 7.096 86.038 91.674 149.404 425.363
RMSE | Min | Median | Max |
---|---|---|---|
Rf | 34.918 | 40.585 | 46.213 |
Lgb | 34.102 | 40.424 | 46.415 |
Svm | 36.847 | 41.906 | 47.528 |
Ensemble | 34.396 | 40.106 | 45.723 |
R2 | Min | Median | Max |
---|---|---|---|
rf | 0.689 | 0.744 | 0.794 |
lgb | 0.682 | 0.744 | 0.792 |
svm | 0.637 | 0.727 | 0.780 |
ensemble | 0.693 | 0.747 | 0.796 |
lgb rf svm
0.3386723 0.3351334 0.3261943
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = pred_values)
Residuals:
Min 1Q Median 3Q Max
-135.84 -21.00 -0.54 15.65 220.05
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.030e+00 5.557e-01 -3.654 0.000259 ***
rf_pred 2.987e-01 8.609e-02 3.470 0.000521 ***
lgb_pred 7.340e-01 7.983e-02 9.195 < 2e-16 ***
svm_pred 1.968e-01 4.337e-02 4.537 5.73e-06 ***
rf_pred:lgb_pred -1.261e-03 3.022e-04 -4.174 3.00e-05 ***
rf_pred:svm_pred 2.327e-03 5.495e-04 4.234 2.30e-05 ***
lgb_pred:svm_pred -3.083e-03 4.915e-04 -6.272 3.63e-10 ***
rf_pred:lgb_pred:svm_pred 3.270e-06 1.085e-06 3.015 0.002572 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 39.79 on 22992 degrees of freedom
Multiple R-squared: 0.7478, Adjusted R-squared: 0.7478
F-statistic: 9741 on 7 and 22992 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 1000
$mtry
[1] 18
$min.node.size
[1] 7
$sample.fraction
[1] 0.2
$splitrule
[1] "variance"
$replace
[1] TRUE
$formula
agb_mgha ~ .
LGB:
$learning_rate
[1] 0.05
$nrounds
[1] 100
$num_leaves
[1] 5
$max_depth
[1] 2
$extra_trees
[1] TRUE
$min_data_in_leaf
[1] 10
$bagging_fraction
[1] 0.3
$bagging_freq
[1] 1
$feature_fraction
[1] 0.4
$min_data_in_bin
[1] 8
$lambda_l1
[1] 5
$lambda_l2
[1] 1
$force_col_wise
[1] TRUE
SVM:
$x
agb_mgha ~ .
$kernel
[1] "laplacedot"
$type
[1] "eps-svr"
$kpar
$kpar$sigma
[1] 0.0078125
$C
[1] 12
$epsilon
[1] 1.525879e-05
Linear model:
NULL
RMSE-weighted:
NULL
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Mahoney (2021, April 26). CAFRI Labs: Component Bias Corrections. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/component-bias-corrections/
BibTeX citation
@misc{mahoney2021component, author = {Mahoney, Mike}, title = {CAFRI Labs: Component Bias Corrections}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/component-bias-corrections/}, year = {2021} }