Hudak POC Model – trained on WWE, with LCMAP (tree cover only) masking and stratified sampling
Model training with WWE Linear Ensemble raster with LCMAP masking - stratified sampling
RF (ranger) | GBM (LightGBM) | SVM (kernlab) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|---|
RMSE | 40.626 | 40.312 | 41.880 | 39.112 | 39.404 |
MBE | 0.137 | -0.375 | 0.242 | -0.542 | -0.002 |
R2 | 0.752 | 0.746 | 0.727 | 0.762 | 0.759 |
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 71.41 140.75 140.23 208.25 294.52
Across 100 bootstrap iterations, our ensemble model had a mean RMSE of 40.131 \(\pm\) 0.163.
RMSE | Min | Median | Max |
---|---|---|---|
Rf | 38.255 | 40.588 | 42.189 |
Lgb | 38.204 | 39.901 | 41.810 |
Svm | 39.039 | 41.735 | 44.960 |
Ensemble | 36.728 | 39.070 | 41.066 |
R2 | Min | Median | Max |
---|---|---|---|
rf | 0.734 | 0.759 | 0.789 |
lgb | 0.733 | 0.754 | 0.775 |
svm | 0.693 | 0.731 | 0.765 |
ensemble | 0.742 | 0.768 | 0.797 |
lgb rf svm
0.3381861 0.3340915 0.3277224
Call:
lm(formula = agb ~ rf_pred * lgb_pred * svm_pred, data = pred_values)
Residuals:
Min 1Q Median 3Q Max
-218.013 -21.018 1.227 22.487 196.860
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.663e+00 6.401e-01 11.971 < 2e-16 ***
rf_pred 2.814e-01 1.827e-02 15.398 < 2e-16 ***
lgb_pred 9.818e-02 1.540e-02 6.375 1.84e-10 ***
svm_pred 4.179e-03 1.506e-02 0.277 0.781
rf_pred:lgb_pred 2.867e-03 1.093e-04 26.234 < 2e-16 ***
rf_pred:svm_pred 1.263e-03 1.049e-04 12.035 < 2e-16 ***
lgb_pred:svm_pred 1.695e-03 1.111e-04 15.249 < 2e-16 ***
rf_pred:lgb_pred:svm_pred -1.358e-05 3.285e-07 -41.322 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 38.36 on 147892 degrees of freedom
Multiple R-squared: 0.7736, Adjusted R-squared: 0.7736
F-statistic: 7.218e+04 on 7 and 147892 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 500
$mtry
[1] 4
$min.node.size
[1] 1
$sample.fraction
[1] 0.95
$splitrule
[1] "extratrees"
$replace
[1] FALSE
$formula
agb ~ .
LGB:
$learning_rate
[1] 0.1
$nrounds
[1] 500
$num_leaves
[1] 9
$max_depth
[1] -1
$extra_trees
[1] FALSE
$min_data_in_leaf
[1] 10
$bagging_fraction
[1] 0.9
$bagging_freq
[1] 1
$feature_fraction
[1] 0.4
$min_data_in_bin
[1] 10
$lambda_l1
[1] 0
$lambda_l2
[1] 0
$force_col_wise
[1] TRUE
SVM:
$x
agb ~ .
$kernel
[1] "laplacedot"
$type
[1] "eps-svr"
$kpar
$kpar$sigma
[1] 0.00390625
$C
[1] 64
$epsilon
[1] 0.03125
$nu
[1] 0.2
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Phoenix (2021, March 8). CAFRI Labs: Model Updates. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/hudakpocmodels/
BibTeX citation
@misc{phoenix2021model, author = {Phoenix, Daniel}, title = {CAFRI Labs: Model Updates}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/hudakpocmodels/}, year = {2021} }