Hudak-method models using LCMAP primary and secondary classifications as predictors. 2021-07-19
Last iteration: 2021-07-13 - Landsat AGB 0.0.4: Do it Better
RF (ranger) | GBM (LightGBM) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|
RMSE | 46.541 | 42.049 | 41.969 | 42.790 |
RMSE % | 32.398 | 29.271 | 29.216 | 29.787 |
MBE | -0.001 | -0.150 | -0.283 | -0.079 |
R2 | 0.693 | 0.744 | 0.745 | 0.738 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00011 71.90615 143.20532 143.63437 215.93515 306.56705
RMSE | Min | Median | Max |
---|---|---|---|
Rf | 47.012 | 47.715 | 48.489 |
Lgb | 42.442 | 43.184 | 44.060 |
Ensemble | 43.219 | 43.851 | 44.603 |
R2 | Min | Median | Max |
---|---|---|---|
rf | 0.665 | 0.679 | 0.689 |
lgb | 0.723 | 0.732 | 0.743 |
ensemble | 0.717 | 0.727 | 0.736 |
lgb rf
0.5239175 0.4760825
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred, data = pred_values)
Residuals:
Min 1Q Median 3Q Max
-243.469 -25.489 -0.016 25.922 277.713
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.818e-01 1.816e-01 -1.001 0.317
rf_pred 1.372e-01 2.499e-03 54.904 <2e-16 ***
lgb_pred 8.311e-01 2.538e-03 327.406 <2e-16 ***
rf_pred:lgb_pred 1.836e-04 9.875e-06 18.595 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 43.04 on 955696 degrees of freedom
Multiple R-squared: 0.7338, Adjusted R-squared: 0.7338
F-statistic: 8.781e+05 on 3 and 955696 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 1000
$mtry
[1] 8
$min.node.size
[1] 2
$sample.fraction
[1] 1
$splitrule
[1] "maxstat"
$replace
[1] FALSE
$formula
agb_mgha ~ .
LGB:
$learning_rate
[1] 0.1
$nrounds
[1] 1500
$num_leaves
[1] 23
$max_depth
[1] -1
$extra_trees
[1] FALSE
$min_data_in_leaf
[1] 10
$bagging_fraction
[1] 0.9
$bagging_freq
[1] 1
$feature_fraction
[1] 0.9
$min_data_in_bin
[1] 3
$lambda_l1
[1] 9
$lambda_l2
[1] 8
$force_col_wise
[1] TRUE
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Mahoney (2021, July 19). CAFRI Labs: Landsat AGB 0.0.5: High Class. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-agb-005-high-class/
BibTeX citation
@misc{mahoney2021landsat, author = {Mahoney, Mike}, title = {CAFRI Labs: Landsat AGB 0.0.5: High Class}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-agb-005-high-class/}, year = {2021} }