RF (ranger) | GBM (LightGBM) | SVM (kernlab) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|---|
RMSE | 40.290 | 36.368 | 37.739 | 35.425 | 35.988 |
MBE | -0.120 | 0.363 | 0.307 | -0.193 | 0.192 |
R2 | 0.756 | 0.799 | 0.784 | 0.810 | 0.804 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00232 71.11791 141.31125 140.99832 210.46496 294.52237
RMSE | Min | Median | Max |
---|---|---|---|
Rf | 38.862 | 40.851 | 42.229 |
Lgb | 35.580 | 37.056 | 38.503 |
Svm | 37.588 | 39.025 | 40.645 |
Ensemble | 35.378 | 36.791 | 38.210 |
R2 | Min | Median | Max |
---|---|---|---|
rf | 0.730 | 0.751 | 0.777 |
lgb | 0.771 | 0.790 | 0.809 |
svm | 0.749 | 0.768 | 0.785 |
ensemble | 0.780 | 0.796 | 0.813 |
lgb rf svm
0.3501030 0.3145027 0.3353944
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = pred_values)
Residuals:
Min 1Q Median 3Q Max
-181.663 -19.332 0.516 20.048 219.547
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.879e+00 4.911e-01 11.971 < 2e-16 ***
rf_pred 8.275e-02 1.239e-02 6.680 2.4e-11 ***
lgb_pred 3.224e-01 1.354e-02 23.806 < 2e-16 ***
svm_pred 2.688e-01 1.130e-02 23.783 < 2e-16 ***
rf_pred:lgb_pred 1.281e-03 7.957e-05 16.098 < 2e-16 ***
rf_pred:svm_pred -2.022e-04 8.806e-05 -2.296 0.0217 *
lgb_pred:svm_pred 1.856e-03 7.800e-05 23.796 < 2e-16 ***
rf_pred:lgb_pred:svm_pred -6.952e-06 2.557e-07 -27.184 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 36.2 on 201292 degrees of freedom
Multiple R-squared: 0.7998, Adjusted R-squared: 0.7998
F-statistic: 1.149e+05 on 7 and 201292 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 1000
$mtry
[1] 7
$min.node.size
[1] 1
$sample.fraction
[1] 0.95
$splitrule
[1] "maxstat"
$replace
[1] FALSE
$formula
agb_mgha ~ .
LGB:
$learning_rate
[1] 0.1
$nrounds
[1] 500
$num_leaves
[1] 23
$max_depth
[1] -1
$extra_trees
[1] FALSE
$min_data_in_leaf
[1] 10
$bagging_fraction
[1] 0.8
$bagging_freq
[1] 1
$feature_fraction
[1] 0.8
$min_data_in_bin
[1] 23
$lambda_l1
[1] 0.5
$lambda_l2
[1] 6
$force_col_wise
[1] TRUE
SVM:
$x
agb_mgha ~ .
$kernel
[1] "laplacedot"
$type
[1] "eps-svr"
$kpar
$kpar$sigma
[1] 0.00390625
$C
[1] 256
$epsilon
[1] 0.03125
$nu
[1] 0.2
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Mahoney (2021, June 15). CAFRI Labs: Landsat AGB: Early Efforts. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-agb-early-efforts/
BibTeX citation
@misc{mahoney2021landsat, author = {Mahoney, Mike}, title = {CAFRI Labs: Landsat AGB: Early Efforts}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-agb-early-efforts/}, year = {2021} }