Landsat Ensemble AGB 1.1.1: Data Ensemble

Lucas Johnson true
2022-09-20

Change Summary

Notes

FIA Test Plot Results

RF (ranger) GBM (LightGBM) Ensemble (model weighted) Ensemble (RMSE weighted)
%RMSE 41.634 42.051 40.969 40.962
RMSE 52.615 53.142 51.776 51.767
MAE 40.199 39.907 39.246 39.336
MBE 5.144 4.686 4.958 4.918
R2 0.516 0.509 0.530 0.530

Training Data Distribution

summary(training$agb_mgha)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    0.0    73.2   130.9   131.7   187.4   425.0 

Testing Data Distribution

summary(testing$agb_mgha)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   0.00   78.28  128.09  126.38  174.86  422.62 

Metadata

Ensembles


Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred, data = k_fold_preds)

Residuals:
     Min       1Q   Median       3Q      Max 
-160.797   -2.549    0.273    2.113  170.171 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)      -2.246e+00  4.206e-01  -5.341 9.34e-08 ***
rf_pred           5.933e-01  1.009e-02  58.802  < 2e-16 ***
lgb_pred          4.134e-01  1.005e-02  41.124  < 2e-16 ***
rf_pred:lgb_pred  6.863e-05  2.295e-05   2.991  0.00279 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 23.18 on 24996 degrees of freedom
Multiple R-squared:  0.9109,    Adjusted R-squared:  0.9109 
F-statistic: 8.522e+04 on 3 and 24996 DF,  p-value: < 2.2e-16

\(n\) and \(p\)

Component Models

Random forest:

$num.trees
[1] 1000

$mtry
[1] 58

$min.node.size
[1] 2

$sample.fraction
[1] 1

$replace
[1] FALSE

$formula
agb_mgha ~ .

LGB:

$params
$params$num_leaves
[1] 44

$params$max_depth
[1] 15

$params$extra_trees
[1] FALSE

$params$min_data_in_leaf
[1] 10

$params$bagging_fraction
[1] 0.9

$params$bagging_freq
[1] 1

$params$feature_fraction
[1] 0.9

$params$min_data_in_bin
[1] 18

$params$lambda_l1
[1] 1

$params$lambda_l2
[1] 9

$params$learning_rate
[1] 0.3

$params$force_col_wise
[1] TRUE

$params$nrounds
[1] 500

Corrections

If you see mistakes or want to suggest changes, please create an issue on the source repository.

Citation

For attribution, please cite this work as

Johnson (2022, Sept. 20). CAFRI Labs: Landsat Ensemble AGB 1.1.1: Data Ensemble. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-ensemble-agb-111-data-ensemble/

BibTeX citation

@misc{johnson2022landsat,
  author = {Johnson, Lucas},
  title = {CAFRI Labs: Landsat Ensemble AGB 1.1.1: Data Ensemble},
  url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-ensemble-agb-111-data-ensemble/},
  year = {2022}
}