RF (ranger) | GBM (LightGBM) | SVM (kernlab) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|---|
RMSE | 50.440 | 49.085 | 48.579 | 47.824 | 48.244 |
MBE | 0.169 | 0.295 | -3.238 | 0.653 | -0.923 |
R2 | 0.613 | 0.628 | 0.639 | 0.647 | 0.644 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 0.00 61.56 79.10 139.79 425.00
RMSE | Min | Median | Max |
---|---|---|---|
Rf | 47.604 | 52.243 | 55.840 |
Lgb | 46.297 | 50.332 | 53.434 |
Svm | 46.729 | 51.582 | 55.886 |
Ensemble | 45.509 | 50.254 | 53.854 |
R2 | Min | Median | Max |
---|---|---|---|
rf | 0.557 | 0.599 | 0.646 |
lgb | 0.585 | 0.618 | 0.679 |
svm | 0.563 | 0.604 | 0.657 |
ensemble | 0.590 | 0.628 | 0.682 |
lgb rf svm
0.3390723 0.3279463 0.3329814
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = pred_values)
Residuals:
Min 1Q Median 3Q Max
-178.625 -26.094 -3.477 17.530 245.788
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.201e+00 4.049e-01 2.966 0.00302 **
rf_pred -1.412e-01 2.824e-02 -5.003 5.67e-07 ***
lgb_pred 2.634e-01 4.072e-02 6.468 1.00e-10 ***
svm_pred 5.302e-01 2.300e-02 23.055 < 2e-16 ***
rf_pred:lgb_pred 4.032e-03 2.424e-04 16.635 < 2e-16 ***
rf_pred:svm_pred -4.601e-04 2.958e-04 -1.556 0.11979
lgb_pred:svm_pred 3.202e-03 3.888e-04 8.235 < 2e-16 ***
rf_pred:lgb_pred:svm_pred -2.878e-05 1.704e-06 -16.896 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 49.43 on 92492 degrees of freedom
Multiple R-squared: 0.6324, Adjusted R-squared: 0.6324
F-statistic: 2.273e+04 on 7 and 92492 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 500
$mtry
[1] 5
$min.node.size
[1] 5
$sample.fraction
[1] 0.55
$splitrule
[1] "maxstat"
$replace
[1] FALSE
$formula
agb_mgha ~ .
LGB:
$learning_rate
[1] 0.05
$nrounds
[1] 100
$num_leaves
[1] 13
$max_depth
[1] -1
$extra_trees
[1] FALSE
$min_data_in_leaf
[1] 8
$bagging_fraction
[1] 0.4
$bagging_freq
[1] 1
$feature_fraction
[1] 0.9
$min_data_in_bin
[1] 3
$lambda_l1
[1] 5
$lambda_l2
[1] 3
$force_col_wise
[1] TRUE
SVM:
$x
agb_mgha ~ .
$kernel
[1] "laplacedot"
$type
[1] "eps-svr"
$kpar
$kpar$sigma
[1] 0.0078125
$C
[1] 32
$epsilon
[1] 0.0078125
$nu
[1] 0.2
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Mahoney (2021, June 21). CAFRI Labs: Landsat FIA AGB. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb/
BibTeX citation
@misc{mahoney2021landsat, author = {Mahoney, Mike}, title = {CAFRI Labs: Landsat FIA AGB}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb/}, year = {2021} }