Last version of FIA models: 2021-07-06 Take Two
Comparison Hudak method: 2021-07-19 0.0.5 High Class
RF (ranger) | GBM (LightGBM) | SVM (kernlab) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|---|
RMSE | 46.998 | 47.494 | 48.081 | 46.714 | 46.540 |
MBE | 1.058 | 0.154 | -0.843 | 0.770 | 0.134 |
R2 | 0.666 | 0.658 | 0.650 | 0.669 | 0.673 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 0.00 61.55 79.01 139.60 425.00
RMSE | Min | Median | Max |
---|---|---|---|
Rf | 45.144 | 48.646 | 51.930 |
Lgb | 45.090 | 48.580 | 52.525 |
Svm | 45.039 | 50.191 | 88.470 |
Ensemble | 44.548 | 48.860 | 57.898 |
R2 | Min | Median | Max |
---|---|---|---|
rf | 0.603 | 0.644 | 0.682 |
lgb | 0.595 | 0.641 | 0.681 |
svm | 0.173 | 0.628 | 0.670 |
ensemble | 0.604 | 0.652 | 0.690 |
lgb rf svm
0.3326046 0.3396057 0.3277897
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = pred_values)
Residuals:
Min 1Q Median 3Q Max
-189.558 -21.504 -4.116 16.588 277.471
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.259e-01 4.117e-01 0.306 0.75969
rf_pred 2.317e-01 3.186e-02 7.270 3.61e-13 ***
lgb_pred 3.614e-01 3.370e-02 10.724 < 2e-16 ***
svm_pred 2.991e-02 1.096e-02 2.729 0.00636 **
rf_pred:lgb_pred 2.253e-03 1.317e-04 17.112 < 2e-16 ***
rf_pred:svm_pred 3.978e-03 3.343e-04 11.898 < 2e-16 ***
lgb_pred:svm_pred -3.098e-04 3.402e-04 -0.911 0.36251
rf_pred:lgb_pred:svm_pred -2.107e-05 1.246e-06 -16.911 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 48.18 on 91992 degrees of freedom
Multiple R-squared: 0.6503, Adjusted R-squared: 0.6502
F-statistic: 2.443e+04 on 7 and 91992 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 1000
$mtry
[1] 10
$min.node.size
[1] 2
$sample.fraction
[1] 1
$splitrule
[1] "variance"
$replace
[1] TRUE
$formula
agb_mgha ~ .
LGB:
$learning_rate
[1] 0.1
$nrounds
[1] 50
$num_leaves
[1] 14
$max_depth
[1] -1
$extra_trees
[1] TRUE
$min_data_in_leaf
[1] 10
$bagging_fraction
[1] 0.9
$bagging_freq
[1] 10
$feature_fraction
[1] 0.9
$min_data_in_bin
[1] 13
$lambda_l1
[1] 2
$lambda_l2
[1] 2
$force_col_wise
[1] TRUE
SVM:
$x
agb_mgha ~ .
$kernel
[1] "laplacedot"
$type
[1] "eps-svr"
$kpar
$kpar$sigma
[1] 0.03125
$C
[1] 16
$epsilon
[1] 0.0625
$nu
[1] 0.2
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Mahoney (2021, July 20). CAFRI Labs: Landsat FIA AGB 0.0.5: High Class. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-005-high-class/
BibTeX citation
@misc{mahoney2021landsat, author = {Mahoney, Mike}, title = {CAFRI Labs: Landsat FIA AGB 0.0.5: High Class}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-005-high-class/}, year = {2021} }