Last version of FIA models: 2021-07-19 High Class
RF (ranger) | GBM (LightGBM) | SVM (kernlab) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|---|
RMSE | 59.360 | 59.994 | 57.352 | 56.990 | 58.112 |
MBE | 0.732 | -0.383 | -4.375 | -1.288 | -1.359 |
R2 | 0.303 | 0.283 | 0.347 | 0.351 | 0.334 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 89.95 134.63 136.85 179.18 425.00
RMSE | Min | Median | Max |
---|---|---|---|
Rf | 53.590 | 56.972 | 60.422 |
Lgb | 54.247 | 57.070 | 60.789 |
Svm | 52.304 | 55.653 | 58.862 |
Ensemble | 52.581 | 55.771 | 58.898 |
R2 | Min | Median | Max |
---|---|---|---|
rf | 0.231 | 0.298 | 0.359 |
lgb | 0.216 | 0.284 | 0.354 |
svm | 0.253 | 0.318 | 0.385 |
ensemble | 0.258 | 0.325 | 0.384 |
lgb rf svm
0.3301731 0.3325303 0.3372966
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = pred_values)
Residuals:
Min 1Q Median 3Q Max
-169.619 -37.546 -3.781 32.045 254.176
Coefficients:
Estimate Std. Error t value
(Intercept) 30.906801545 7.364339483 4.197
rf_pred 0.025249766 0.131872587 0.191
lgb_pred -0.737581177 0.128942477 -5.720
svm_pred 0.456834954 0.073163585 6.244
rf_pred:lgb_pred 0.005798133 0.000785825 7.378
rf_pred:svm_pred 0.000953535 0.000852493 1.119
lgb_pred:svm_pred 0.005575557 0.000938360 5.942
rf_pred:lgb_pred:svm_pred -0.000034029 0.000003859 -8.818
Pr(>|t|)
(Intercept) 0.000027124191481 ***
rf_pred 0.848
lgb_pred 0.000000010709321 ***
svm_pred 0.000000000430506 ***
rf_pred:lgb_pred 0.000000000000163 ***
rf_pred:svm_pred 0.263
lgb_pred:svm_pred 0.000000002840873 ***
rf_pred:lgb_pred:svm_pred < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 55 on 42292 degrees of freedom
Multiple R-squared: 0.3303, Adjusted R-squared: 0.3302
F-statistic: 2980 on 7 and 42292 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 1500
$mtry
[1] 7
$min.node.size
[1] 3
$sample.fraction
[1] 0.7
$splitrule
[1] "variance"
$replace
[1] TRUE
$formula
agb_mgha ~ .
LGB:
$nrounds
[1] 50
$params
$params$learning_rate
[1] 0.05
$params$num_leaves
[1] 13
$params$max_depth
[1] -1
$params$extra_trees
[1] FALSE
$params$min_data_in_leaf
[1] 10
$params$bagging_fraction
[1] 0.4
$params$bagging_freq
[1] 1
$params$feature_fraction
[1] 1
$params$min_data_in_bin
[1] 18
$params$lambda_l1
[1] 3
$params$lambda_l2
[1] 0
$params$force_col_wise
[1] TRUE
SVM:
$x
agb_mgha ~ .
$kernel
[1] "laplacedot"
$type
[1] "eps-svr"
$kpar
$kpar$sigma
[1] 0.0078125
$C
[1] 16
$epsilon
[1] 0.25
$nu
[1] 0.2
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Mahoney (2022, April 11). CAFRI Labs: Landsat FIA AGB 0.0.99: Final Countdown. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-0099-final-countdown/
BibTeX citation
@misc{mahoney2022landsat, author = {Mahoney, Mike}, title = {CAFRI Labs: Landsat FIA AGB 0.0.99: Final Countdown}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-0099-final-countdown/}, year = {2022} }