Landsat FIA AGB 1.1.0: More data = more better

Lucas Johnson true
2022-06-22

Evaluation Results

Last version of FIA models: 2022-04-11 Final Countdown

Change Summary

RF (ranger) GBM (LightGBM) SVM (kernlab) Ensemble (model weighted) Ensemble (RMSE weighted)
%RMSE 39.729 40.433 39.233 38.758 39.174
RMSE 54.577 55.545 53.897 53.244 53.816
MAE 42.941 43.655 42.093 41.869 42.259
MBE 1.578 1.225 -1.228 1.179 0.506
R2 0.362 0.339 0.374 0.389 0.382

AGB Distribution

summary(bind_rows(training, testing)$agb_mgha)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   0.00   89.51  134.78  136.82  179.32  425.00 

Metadata

Ensembles


Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = k_fold_preds)

Residuals:
     Min       1Q   Median       3Q      Max 
-158.666  -34.994   -3.824   30.331  220.747 

Coefficients:
                            Estimate Std. Error t value Pr(>|t|)  
(Intercept)               -6.073e-01  2.551e+01  -0.024   0.9810  
rf_pred                   -5.753e-01  4.238e-01  -1.358   0.1748  
lgb_pred                   3.150e-01  5.250e-01   0.600   0.5486  
svm_pred                   7.263e-01  3.561e-01   2.040   0.0416 *
rf_pred:lgb_pred           4.386e-03  3.060e-03   1.433   0.1520  
rf_pred:svm_pred           4.379e-03  2.903e-03   1.509   0.1316  
lgb_pred:svm_pred         -1.537e-03  3.671e-03  -0.419   0.6754  
rf_pred:lgb_pred:svm_pred -2.279e-05  1.460e-05  -1.561   0.1188  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 52.65 on 1407 degrees of freedom
Multiple R-squared:  0.4093,    Adjusted R-squared:  0.4063 
F-statistic: 139.2 on 7 and 1407 DF,  p-value: < 2.2e-16

Coverages

\(n\) and \(p\)

Component Models

Random forest:

$num.trees
[1] 3500

$mtry
[1] 36

$min.node.size
[1] 4

$sample.fraction
[1] 1

$replace
[1] FALSE

$formula
agb_mgha ~ .

LGB:

$nrounds
[1] 50

$params
$params$learning_rate
[1] 0.05

$params$num_leaves
[1] 36

$params$max_depth
[1] -1

$params$extra_trees
[1] TRUE

$params$min_data_in_leaf
[1] 3

$params$bagging_fraction
[1] 0.5

$params$bagging_freq
[1] 10

$params$feature_fraction
[1] 0.8

$params$min_data_in_bin
[1] 13

$params$lambda_l1
[1] 8

$params$lambda_l2
[1] 0

$params$force_col_wise
[1] TRUE

SVM:

$x
agb_mgha ~ .

$kernel
[1] "laplacedot"

$type
[1] "eps-svr"

$kpar
$kpar$sigma
[1] 0.015625


$C
[1] 8

$epsilon
[1] 0.125

$nu
[1] 0.2

Corrections

If you see mistakes or want to suggest changes, please create an issue on the source repository.

Citation

For attribution, please cite this work as

Johnson (2022, June 14). CAFRI Labs: Landsat FIA AGB 1.1.0: More data = more better. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-110-more-data-more-better/

BibTeX citation

@misc{johnson2022landsat,
  author = {Johnson, Lucas},
  title = {CAFRI Labs: Landsat FIA AGB 1.1.0: More data = more better},
  url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-110-more-data-more-better/},
  year = {2022}
}