Last version of FIA models: 2022-04-11 Final Countdown
RF (ranger) | GBM (LightGBM) | SVM (kernlab) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|---|
%RMSE | 39.729 | 40.433 | 39.233 | 38.758 | 39.174 |
RMSE | 54.577 | 55.545 | 53.897 | 53.244 | 53.816 |
MAE | 42.941 | 43.655 | 42.093 | 41.869 | 42.259 |
MBE | 1.578 | 1.225 | -1.228 | 1.179 | 0.506 |
R2 | 0.362 | 0.339 | 0.374 | 0.389 | 0.382 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 89.51 134.78 136.82 179.32 425.00
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = k_fold_preds)
Residuals:
Min 1Q Median 3Q Max
-158.666 -34.994 -3.824 30.331 220.747
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.073e-01 2.551e+01 -0.024 0.9810
rf_pred -5.753e-01 4.238e-01 -1.358 0.1748
lgb_pred 3.150e-01 5.250e-01 0.600 0.5486
svm_pred 7.263e-01 3.561e-01 2.040 0.0416 *
rf_pred:lgb_pred 4.386e-03 3.060e-03 1.433 0.1520
rf_pred:svm_pred 4.379e-03 2.903e-03 1.509 0.1316
lgb_pred:svm_pred -1.537e-03 3.671e-03 -0.419 0.6754
rf_pred:lgb_pred:svm_pred -2.279e-05 1.460e-05 -1.561 0.1188
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 52.65 on 1407 degrees of freedom
Multiple R-squared: 0.4093, Adjusted R-squared: 0.4063
F-statistic: 139.2 on 7 and 1407 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 3500
$mtry
[1] 36
$min.node.size
[1] 4
$sample.fraction
[1] 1
$replace
[1] FALSE
$formula
agb_mgha ~ .
LGB:
$nrounds
[1] 50
$params
$params$learning_rate
[1] 0.05
$params$num_leaves
[1] 36
$params$max_depth
[1] -1
$params$extra_trees
[1] TRUE
$params$min_data_in_leaf
[1] 3
$params$bagging_fraction
[1] 0.5
$params$bagging_freq
[1] 10
$params$feature_fraction
[1] 0.8
$params$min_data_in_bin
[1] 13
$params$lambda_l1
[1] 8
$params$lambda_l2
[1] 0
$params$force_col_wise
[1] TRUE
SVM:
$x
agb_mgha ~ .
$kernel
[1] "laplacedot"
$type
[1] "eps-svr"
$kpar
$kpar$sigma
[1] 0.015625
$C
[1] 8
$epsilon
[1] 0.125
$nu
[1] 0.2
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2022, June 14). CAFRI Labs: Landsat FIA AGB 1.1.0: More data = more better. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-110-more-data-more-better/
BibTeX citation
@misc{johnson2022landsat, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat FIA AGB 1.1.0: More data = more better}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-110-more-data-more-better/}, year = {2022} }