Last version of FIA models: 2022-04-11 More Data = More Better
RF (ranger) | GBM (LightGBM) | SVM (kernlab) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|---|
%RMSE | 41.231 | 41.825 | 41.252 | 40.523 | 40.835 |
RMSE | 52.106 | 52.857 | 52.132 | 51.211 | 51.606 |
MAE | 39.401 | 40.277 | 39.373 | 38.884 | 39.194 |
MBE | 1.252 | 0.854 | -1.460 | 0.671 | 0.205 |
R2 | 0.523 | 0.506 | 0.521 | 0.537 | 0.532 |
RF (ranger) | GBM (LightGBM) | SVM (kernlab) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|---|
%RMSE | 39.516 | 40.085 | 39.517 | 38.860 | 39.140 |
RMSE | 54.285 | 55.066 | 54.286 | 53.383 | 53.769 |
MAE | 42.497 | 43.422 | 42.387 | 42.070 | 42.235 |
MBE | 1.028 | 0.567 | -2.000 | 0.728 | -0.146 |
R2 | 0.370 | 0.346 | 0.366 | 0.386 | 0.381 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 75.17 126.45 125.90 174.95 425.00
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = k_fold_preds)
Residuals:
Min 1Q Median 3Q Max
-143.41 -33.96 -1.57 27.86 211.21
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.951e+00 5.355e+00 -0.364 0.71566
rf_pred 3.187e-01 2.903e-01 1.098 0.27245
lgb_pred -1.012e-01 3.105e-01 -0.326 0.74447
svm_pred 1.897e-01 2.238e-01 0.848 0.39678
rf_pred:lgb_pred 1.080e-03 1.692e-03 0.638 0.52340
rf_pred:svm_pred 1.906e-03 2.305e-03 0.827 0.40837
lgb_pred:svm_pred 4.986e-03 2.576e-03 1.936 0.05307 .
rf_pred:lgb_pred:svm_pred -2.463e-05 8.718e-06 -2.825 0.00479 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 50.89 on 1532 degrees of freedom
Multiple R-squared: 0.5438, Adjusted R-squared: 0.5417
F-statistic: 260.9 on 7 and 1532 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 1500
$mtry
[1] 45
$min.node.size
[1] 4
$sample.fraction
[1] 0.75
$replace
[1] FALSE
$formula
agb_mgha ~ .
LGB:
$nrounds
[1] 50
$params
$params$learning_rate
[1] 0.1
$params$num_leaves
[1] 12
$params$max_depth
[1] 3
$params$extra_trees
[1] TRUE
$params$min_data_in_leaf
[1] 6
$params$bagging_fraction
[1] 0.9
$params$bagging_freq
[1] 5
$params$feature_fraction
[1] 1
$params$min_data_in_bin
[1] 14
$params$lambda_l1
[1] 0.5
$params$lambda_l2
[1] 1
$params$force_col_wise
[1] TRUE
SVM:
$x
agb_mgha ~ .
$kernel
[1] "laplacedot"
$type
[1] "eps-svr"
$kpar
$kpar$sigma
[1] 0.0078125
$C
[1] 12
$epsilon
[1] 0.125
$nu
[1] 0.2
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2022, June 23). CAFRI Labs: Landsat FIA AGB 1.1.1: LiDAR Zeros. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-111-lidar-zeros/
BibTeX citation
@misc{johnson2022landsat, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat FIA AGB 1.1.1: LiDAR Zeros}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-111-lidar-zeros/}, year = {2022} }