Last version of FIA models: 2022-06-23 LiDAR Zeros
This version uses PCA to reduce the dimensionality of the data
We used 99% variance to select PCs
This version includes 176 completely non-forested FIA plots, with maximum LiDAR heights < 1m, and an inferred AGB value of 0 Mg/ha
RF (ranger) | GBM (LightGBM) | SVM (kernlab) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|---|
%RMSE | 44.685 | 43.180 | 41.051 | 41.236 | 41.963 |
RMSE | 56.472 | 54.569 | 51.878 | 52.112 | 53.031 |
MAE | 42.660 | 41.828 | 39.651 | 39.606 | 40.560 |
MBE | 0.674 | 1.140 | -1.150 | -0.008 | 0.214 |
R2 | 0.439 | 0.474 | 0.526 | 0.521 | 0.508 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 75.17 126.45 125.90 174.95 425.00
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = k_fold_preds)
Residuals:
Min 1Q Median 3Q Max
-144.838 -33.717 -1.877 28.339 218.126
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.889e+00 6.757e+00 -0.872 0.383576
rf_pred 2.099e-01 1.728e-01 1.215 0.224516
lgb_pred -4.562e-01 2.827e-01 -1.614 0.106808
svm_pred 5.407e-01 2.336e-01 2.315 0.020740 *
rf_pred:lgb_pred 5.451e-03 1.859e-03 2.932 0.003416 **
rf_pred:svm_pred 3.690e-04 2.047e-03 0.180 0.856923
lgb_pred:svm_pred 4.003e-03 1.813e-03 2.208 0.027376 *
rf_pred:lgb_pred:svm_pred -3.060e-05 8.728e-06 -3.506 0.000468 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 51.6 on 1532 degrees of freedom
Multiple R-squared: 0.531, Adjusted R-squared: 0.5288
F-statistic: 247.8 on 7 and 1532 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 1000
$mtry
[1] 35
$min.node.size
[1] 2
$sample.fraction
[1] 0.9
$replace
[1] FALSE
$formula
agb_mgha ~ .
LGB:
$nrounds
[1] 500
$params
$params$learning_rate
[1] 0.05
$params$num_leaves
[1] 16
$params$max_depth
[1] 12
$params$extra_trees
[1] TRUE
$params$min_data_in_leaf
[1] 18
$params$bagging_fraction
[1] 0.3
$params$bagging_freq
[1] 0
$params$feature_fraction
[1] 0.5
$params$min_data_in_bin
[1] 2
$params$lambda_l1
[1] 4
$params$lambda_l2
[1] 0.3
$params$force_col_wise
[1] TRUE
SVM:
$x
agb_mgha ~ .
$kernel
[1] "laplacedot"
$type
[1] "eps-bsvr"
$kpar
$kpar$sigma
[1] 0.00390625
$C
[1] 44
$epsilon
[1] 0.0009765625
$nu
[1] 0.2
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2022, Sept. 15). CAFRI Labs: Landsat FIA AGB 1.1.2: PCA (less data = more faster. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-112-pca-less-data-more-faster/
BibTeX citation
@misc{johnson2022landsat, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat FIA AGB 1.1.2: PCA (less data = more faster}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-112-pca-less-data-more-faster/}, year = {2022} }