Landsat FIA AGB 1.1.2: PCA (less data = more faster

Lucas Johnson true
2022-09-15

Evaluation Results

Last version of FIA models: 2022-06-23 LiDAR Zeros

Change Summary

RF (ranger) GBM (LightGBM) SVM (kernlab) Ensemble (model weighted) Ensemble (RMSE weighted)
%RMSE 44.685 43.180 41.051 41.236 41.963
RMSE 56.472 54.569 51.878 52.112 53.031
MAE 42.660 41.828 39.651 39.606 40.560
MBE 0.674 1.140 -1.150 -0.008 0.214
R2 0.439 0.474 0.526 0.521 0.508

AGB Distribution

summary(bind_rows(training, testing)$agb_mgha)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   0.00   75.17  126.45  125.90  174.95  425.00 

Metadata

Ensembles


Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = k_fold_preds)

Residuals:
     Min       1Q   Median       3Q      Max 
-144.838  -33.717   -1.877   28.339  218.126 

Coefficients:
                            Estimate Std. Error t value Pr(>|t|)    
(Intercept)               -5.889e+00  6.757e+00  -0.872 0.383576    
rf_pred                    2.099e-01  1.728e-01   1.215 0.224516    
lgb_pred                  -4.562e-01  2.827e-01  -1.614 0.106808    
svm_pred                   5.407e-01  2.336e-01   2.315 0.020740 *  
rf_pred:lgb_pred           5.451e-03  1.859e-03   2.932 0.003416 ** 
rf_pred:svm_pred           3.690e-04  2.047e-03   0.180 0.856923    
lgb_pred:svm_pred          4.003e-03  1.813e-03   2.208 0.027376 *  
rf_pred:lgb_pred:svm_pred -3.060e-05  8.728e-06  -3.506 0.000468 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 51.6 on 1532 degrees of freedom
Multiple R-squared:  0.531, Adjusted R-squared:  0.5288 
F-statistic: 247.8 on 7 and 1532 DF,  p-value: < 2.2e-16

Coverages

\(n\) and \(p\)

Component Models

Random forest:

$num.trees
[1] 1000

$mtry
[1] 35

$min.node.size
[1] 2

$sample.fraction
[1] 0.9

$replace
[1] FALSE

$formula
agb_mgha ~ .

LGB:

$nrounds
[1] 500

$params
$params$learning_rate
[1] 0.05

$params$num_leaves
[1] 16

$params$max_depth
[1] 12

$params$extra_trees
[1] TRUE

$params$min_data_in_leaf
[1] 18

$params$bagging_fraction
[1] 0.3

$params$bagging_freq
[1] 0

$params$feature_fraction
[1] 0.5

$params$min_data_in_bin
[1] 2

$params$lambda_l1
[1] 4

$params$lambda_l2
[1] 0.3

$params$force_col_wise
[1] TRUE

SVM:

$x
agb_mgha ~ .

$kernel
[1] "laplacedot"

$type
[1] "eps-bsvr"

$kpar
$kpar$sigma
[1] 0.00390625


$C
[1] 44

$epsilon
[1] 0.0009765625

$nu
[1] 0.2

Corrections

If you see mistakes or want to suggest changes, please create an issue on the source repository.

Citation

For attribution, please cite this work as

Johnson (2022, Sept. 15). CAFRI Labs: Landsat FIA AGB 1.1.2: PCA (less data = more faster. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-112-pca-less-data-more-faster/

BibTeX citation

@misc{johnson2022landsat,
  author = {Johnson, Lucas},
  title = {CAFRI Labs: Landsat FIA AGB 1.1.2: PCA (less data = more faster},
  url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-112-pca-less-data-more-faster/},
  year = {2022}
}