Last version of FIA models: 2022-06-23 LiDAR Zeroes
Training data is a stratified sample of FIA plots. We selected an equal number of plots from 25 Mg/Ha bins up to 300 Mg/Ha, and from a final bin > 300 Mg/Ha. The stratified sample size is as close as posssible to the original sample size.
To fill each bin random sampling with replacement was conducted. In some bins, this results in downsampling, while in other bins this results in upsampling.
RF (ranger) | GBM (LightGBM) | SVM (kernlab) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|---|
%RMSE | 42.156 | 45.158 | 43.564 | 41.364 | 42.158 |
RMSE | 53.275 | 57.070 | 55.054 | 52.275 | 53.277 |
MAE | 41.092 | 44.222 | 42.170 | 39.599 | 41.189 |
MBE | 7.223 | 9.263 | 6.509 | 0.986 | 7.657 |
R2 | 0.509 | 0.456 | 0.481 | 0.518 | 0.509 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 80.21 147.76 151.75 223.01 425.00
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = k_fold_preds)
Residuals:
Min 1Q Median 3Q Max
-132.418 -0.437 2.563 4.576 219.959
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.800e-01 3.054e+00 -0.092 0.92695
rf_pred -4.742e-02 1.306e-01 -0.363 0.71657
lgb_pred 5.925e-01 1.783e-01 3.324 0.00091 ***
svm_pred 3.805e-01 1.634e-01 2.329 0.02001 *
rf_pred:lgb_pred 8.164e-04 1.132e-03 0.721 0.47102
rf_pred:svm_pred 3.642e-03 1.209e-03 3.013 0.00263 **
lgb_pred:svm_pred -4.119e-03 8.824e-04 -4.668 3.31e-06 ***
rf_pred:lgb_pred:svm_pred -3.010e-07 8.371e-07 -0.360 0.71923
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 31.06 on 1522 degrees of freedom
Multiple R-squared: 0.8948, Adjusted R-squared: 0.8944
F-statistic: 1850 on 7 and 1522 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 2000
$mtry
[1] 16
$min.node.size
[1] 2
$sample.fraction
[1] 1
$replace
[1] FALSE
$formula
agb_mgha ~ .
LGB:
$nrounds
[1] 500
$params
$params$learning_rate
[1] 0.1
$params$num_leaves
[1] 59
$params$max_depth
[1] 19
$params$extra_trees
[1] TRUE
$params$min_data_in_leaf
[1] 14
$params$bagging_fraction
[1] 0.6
$params$bagging_freq
[1] 1
$params$feature_fraction
[1] 0.5
$params$min_data_in_bin
[1] 18
$params$lambda_l1
[1] 0.5
$params$lambda_l2
[1] 0.1
$params$force_col_wise
[1] TRUE
SVM:
$x
agb_mgha ~ .
$kernel
[1] "laplacedot"
$type
[1] "eps-svr"
$kpar
$kpar$sigma
[1] 0.00390625
$C
[1] 84
$epsilon
[1] 0.00390625
$nu
[1] 0.2
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2022, Sept. 17). CAFRI Labs: Landsat FIA AGB 1.1.3: Stratified Sample. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-113-stratified-sample/
BibTeX citation
@misc{johnson2022landsat, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat FIA AGB 1.1.3: Stratified Sample}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-113-stratified-sample/}, year = {2022} }