RF (ranger) | GBM (LightGBM) | SVM (kernlab) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|---|
RMSE | 50.025 | 49.288 | 48.394 | 47.751 | 48.224 |
MBE | 0.152 | 0.971 | 1.983 | 0.812 | 1.040 |
R2 | 0.617 | 0.626 | 0.640 | 0.648 | 0.644 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 0.00 61.56 79.10 139.79 425.00
RMSE | Min | Median | Max |
---|---|---|---|
Rf | 47.160 | 51.792 | 55.203 |
Lgb | 46.049 | 50.343 | 54.077 |
Svm | 46.079 | 50.407 | 54.243 |
Ensemble | 45.133 | 49.831 | 53.484 |
R2 | Min | Median | Max |
---|---|---|---|
rf | 0.564 | 0.605 | 0.654 |
lgb | 0.578 | 0.619 | 0.678 |
svm | 0.575 | 0.621 | 0.664 |
ensemble | 0.596 | 0.634 | 0.685 |
lgb rf svm
0.3374801 0.3282720 0.3342480
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = pred_values)
Residuals:
Min 1Q Median 3Q Max
-179.438 -25.021 -3.747 17.404 245.196
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.777e-01 4.069e-01 1.420 0.15569
rf_pred 1.248e-01 3.827e-02 3.260 0.00112 **
lgb_pred -1.392e-01 4.548e-02 -3.060 0.00221 **
svm_pred 3.928e-01 1.961e-02 20.027 < 2e-16 ***
rf_pred:lgb_pred 3.809e-03 2.118e-04 17.981 < 2e-16 ***
rf_pred:svm_pred -1.871e-03 3.933e-04 -4.757 1.96e-06 ***
lgb_pred:svm_pred 8.120e-03 4.502e-04 18.036 < 2e-16 ***
rf_pred:lgb_pred:svm_pred -3.829e-05 1.505e-06 -25.445 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 49.04 on 92492 degrees of freedom
Multiple R-squared: 0.6382, Adjusted R-squared: 0.6382
F-statistic: 2.331e+04 on 7 and 92492 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 1000
$mtry
[1] 5
$min.node.size
[1] 3
$sample.fraction
[1] 0.7
$splitrule
[1] "maxstat"
$replace
[1] FALSE
$formula
agb_mgha ~ .
LGB:
$learning_rate
[1] 0.05
$nrounds
[1] 100
$num_leaves
[1] 9
$max_depth
[1] -1
$extra_trees
[1] TRUE
$min_data_in_leaf
[1] 10
$bagging_fraction
[1] 0.7
$bagging_freq
[1] 5
$feature_fraction
[1] 1
$min_data_in_bin
[1] 13
$lambda_l1
[1] 0.3
$lambda_l2
[1] 2
$force_col_wise
[1] TRUE
SVM:
$x
agb_mgha ~ .
$kernel
[1] "laplacedot"
$type
[1] "eps-svr"
$kpar
$kpar$sigma
[1] 0.03125
$C
[1] 16
$epsilon
[1] 0.25
$nu
[1] 0.2
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Mahoney (2021, July 6). CAFRI Labs: Landsat FIA AGB - Take Two. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-take-two/
BibTeX citation
@misc{mahoney2021landsat, author = {Mahoney, Mike}, title = {CAFRI Labs: Landsat FIA AGB - Take Two}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsat-fia-agb-take-two/}, year = {2021} }