Map accuracy/agreement assessment following the Riemann et. al. framework.
Map accuracy assessment for Landsat models trained directly on FIA plot data for the years 2013-2019.
Branch used to produce this document: lj_landsat-fia
LCMAP Collection 1.1. primary classification layers were used to mask out non-forested (class != 4) pixels from the modeled AGB surfaces. Annual AGB surfaces were matched to the LMCAP layer from the same year.
NOTE: Masked AGB pixels are set to 0, and included in the agreement assessment just as any other AGB pixel.
Masked classes:
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 680 | NA | 76.71 | -7.17 | 47.20 | 30.02 | 0.64 | 0.11 | 0.58 | 0.96 | 0.62 |
target_2014 | 661 | NA | 79.69 | -8.47 | 48.83 | 30.04 | 0.66 | 0.10 | 0.61 | 0.95 | 0.65 |
target_2015 | 651 | NA | 75.06 | -8.76 | 47.74 | 28.67 | 0.65 | 0.11 | 0.62 | 0.96 | 0.66 |
target_2016 | 628 | NA | 80.50 | -11.63 | 50.70 | 30.86 | 0.63 | 0.11 | 0.60 | 0.95 | 0.65 |
target_2017 | 608 | NA | 81.51 | -11.60 | 49.07 | 30.25 | 0.70 | 0.12 | 0.66 | 0.94 | 0.72 |
target_2018 | 601 | NA | 77.51 | -8.69 | 47.62 | 29.50 | 0.65 | 0.10 | 0.61 | 0.96 | 0.65 |
target_2019 | 595 | NA | 80.97 | -14.01 | 48.60 | 29.37 | 0.69 | 0.13 | 0.67 | 0.94 | 0.73 |
pooled | 4424 | NA | 78.79 | -9.97 | 48.53 | 29.82 | 0.66 | 0.11 | 0.62 | 0.95 | 0.67 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 645 | 1.05 | 76.51 | -7.06 | 47.43 | 30.18 | 0.63 | 0.11 | 0.56 | 0.96 | 0.60 |
target_2014 | 617 | 1.07 | 78.24 | -7.87 | 47.28 | 29.29 | 0.66 | 0.10 | 0.61 | 0.96 | 0.65 |
target_2015 | 574 | 1.13 | 74.87 | -8.42 | 46.58 | 28.01 | 0.65 | 0.11 | 0.61 | 0.96 | 0.65 |
target_2016 | 565 | 1.11 | 79.49 | -11.15 | 49.35 | 30.06 | 0.63 | 0.10 | 0.60 | 0.95 | 0.65 |
target_2017 | 568 | 1.07 | 82.36 | -11.74 | 48.79 | 30.21 | 0.70 | 0.12 | 0.66 | 0.94 | 0.72 |
target_2018 | 551 | 1.09 | 77.10 | -8.61 | 46.40 | 28.89 | 0.66 | 0.10 | 0.62 | 0.96 | 0.66 |
target_2019 | 520 | 1.14 | 81.27 | -14.66 | 48.49 | 29.44 | 0.68 | 0.14 | 0.66 | 0.94 | 0.73 |
pooled | 1502 | 2.95 | 77.24 | -9.85 | 33.89 | 22.80 | 0.71 | 0.06 | 0.70 | 0.96 | 0.74 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 190 | 3.58 | 71.43 | -6.77 | 26.85 | 18.70 | 0.75 | 0.09 | 0.74 | 0.98 | 0.76 |
target_2014 | 184 | 3.59 | 75.98 | -8.17 | 27.68 | 18.75 | 0.78 | 0.09 | 0.78 | 0.97 | 0.80 |
target_2015 | 184 | 3.54 | 70.38 | -7.75 | 28.27 | 19.65 | 0.72 | 0.08 | 0.72 | 0.97 | 0.75 |
target_2016 | 180 | 3.49 | 79.05 | -13.15 | 36.84 | 22.95 | 0.67 | 0.11 | 0.66 | 0.93 | 0.73 |
target_2017 | 182 | 3.34 | 79.84 | -13.01 | 33.54 | 23.36 | 0.77 | 0.09 | 0.75 | 0.94 | 0.81 |
target_2018 | 186 | 3.23 | 76.60 | -10.17 | 37.55 | 23.00 | 0.60 | 0.10 | 0.58 | 0.94 | 0.64 |
target_2019 | 179 | 3.32 | 80.30 | -13.44 | 35.19 | 24.52 | 0.70 | 0.12 | 0.70 | 0.94 | 0.76 |
pooled | 205 | 21.58 | 72.37 | -9.05 | 17.48 | 12.89 | 0.88 | 0.15 | 0.87 | 0.96 | 0.90 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 80 | 8.50 | 67.69 | -6.96 | 19.10 | 13.20 | 0.83 | 0.12 | 0.84 | 0.98 | 0.86 |
target_2014 | 75 | 8.81 | 74.61 | -9.69 | 23.69 | 14.99 | 0.78 | 0.13 | 0.79 | 0.96 | 0.83 |
target_2015 | 77 | 8.45 | 69.17 | -9.76 | 29.17 | 16.51 | 0.56 | 0.13 | 0.59 | 0.95 | 0.64 |
target_2016 | 77 | 8.16 | 75.20 | -11.34 | 21.71 | 14.69 | 0.85 | 0.17 | 0.84 | 0.95 | 0.89 |
target_2017 | 74 | 8.22 | 78.20 | -11.26 | 19.07 | 15.06 | 0.90 | 0.16 | 0.88 | 0.95 | 0.92 |
target_2018 | 77 | 7.81 | 70.36 | -5.79 | 24.80 | 17.72 | 0.70 | 0.12 | 0.70 | 0.98 | 0.72 |
target_2019 | 76 | 7.83 | 78.07 | -12.47 | 26.66 | 19.43 | 0.77 | 0.14 | 0.76 | 0.94 | 0.82 |
pooled | 85 | 52.05 | 70.34 | -9.10 | 14.43 | 10.96 | 0.91 | 0.16 | 0.90 | 0.96 | 0.94 |
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2021, July 12). CAFRI Labs: Landsat:FIA Map Accuracy. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatfia-map-accuracy/
BibTeX citation
@misc{johnson2021landsat:fia, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat:FIA Map Accuracy}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatfia-map-accuracy/}, year = {2021} }