Map accuracy/agreement assessment following the Riemann et. al. framework.
Map accuracy assessment for Landsat models trained directly on FIA plot data for the years 2013-2019. A less aggressive lcmap mask (also applied in LiDAR-AGB v0.0.4) was applied to the modeled surfaces before conducting this assessment.
Branch used to produce this document: lj_landsat-fia-0.0.4-mask
LCMAP Collection 1.1. primary classification layers were used to mask out water, developed, and barren areas i.e. “!class %in% c(1, 5, 8)” pixels from the modeled AGB surfaces. Annual AGB surfaces were matched to the LMCAP layer from the same year.
NOTE: Masked AGB pixels are set to 0, and included in the agreement assessment just as any other AGB pixel.
Masked classes:
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 680 | NA | 76.71 | 2.01 | 43.30 | 30.35 | 0.69 | 0.23 | 0.57 | 0.94 | 0.63 |
target_2014 | 661 | NA | 79.69 | 1.45 | 46.46 | 31.63 | 0.68 | 0.26 | 0.54 | 0.92 | 0.61 |
target_2015 | 651 | NA | 75.06 | 2.55 | 42.89 | 29.97 | 0.72 | 0.26 | 0.61 | 0.93 | 0.68 |
target_2016 | 627 | NA | 80.54 | 0.14 | 44.20 | 30.94 | 0.70 | 0.24 | 0.56 | 0.93 | 0.63 |
target_2017 | 608 | NA | 81.51 | -1.79 | 47.56 | 32.66 | 0.71 | 0.26 | 0.57 | 0.91 | 0.66 |
target_2018 | 601 | NA | 77.51 | 0.91 | 43.60 | 30.16 | 0.70 | 0.28 | 0.57 | 0.94 | 0.64 |
target_2019 | 595 | NA | 80.97 | -1.79 | 43.05 | 29.85 | 0.74 | 0.27 | 0.63 | 0.92 | 0.70 |
pooled | 4423 | NA | 78.80 | 0.56 | 44.47 | 30.79 | 0.70 | 0.26 | 0.57 | 0.93 | 0.64 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 645 | 1.05 | 76.51 | 2.13 | 43.47 | 30.44 | 0.68 | 0.22 | 0.56 | 0.94 | 0.62 |
target_2014 | 617 | 1.07 | 78.24 | 2.04 | 44.70 | 30.75 | 0.69 | 0.25 | 0.56 | 0.93 | 0.63 |
target_2015 | 574 | 1.13 | 74.87 | 3.14 | 41.36 | 28.96 | 0.72 | 0.25 | 0.62 | 0.94 | 0.68 |
target_2016 | 564 | 1.11 | 79.54 | 0.59 | 43.17 | 30.00 | 0.71 | 0.24 | 0.57 | 0.93 | 0.64 |
target_2017 | 568 | 1.07 | 82.36 | -1.96 | 47.07 | 32.24 | 0.71 | 0.25 | 0.57 | 0.91 | 0.66 |
target_2018 | 551 | 1.09 | 77.10 | 1.05 | 42.33 | 29.57 | 0.71 | 0.29 | 0.59 | 0.94 | 0.65 |
target_2019 | 520 | 1.14 | 81.27 | -2.43 | 42.07 | 29.47 | 0.75 | 0.25 | 0.63 | 0.92 | 0.71 |
pooled | 1502 | 2.94 | 77.26 | 0.93 | 29.80 | 21.34 | 0.76 | 0.12 | 0.68 | 0.96 | 0.72 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 190 | 3.58 | 71.43 | 2.33 | 25.06 | 18.60 | 0.76 | 0.08 | 0.72 | 0.98 | 0.74 |
target_2014 | 184 | 3.59 | 75.98 | 2.59 | 26.66 | 18.83 | 0.78 | 0.11 | 0.73 | 0.96 | 0.77 |
target_2015 | 184 | 3.54 | 70.38 | 3.44 | 26.22 | 19.39 | 0.75 | 0.10 | 0.70 | 0.96 | 0.74 |
target_2016 | 180 | 3.48 | 79.06 | -0.37 | 29.73 | 20.53 | 0.77 | 0.09 | 0.65 | 0.92 | 0.73 |
target_2017 | 182 | 3.34 | 79.84 | -2.84 | 30.30 | 22.19 | 0.79 | 0.12 | 0.71 | 0.94 | 0.77 |
target_2018 | 186 | 3.23 | 76.60 | -0.07 | 29.88 | 20.85 | 0.73 | 0.10 | 0.61 | 0.94 | 0.67 |
target_2019 | 179 | 3.32 | 80.30 | -1.77 | 29.81 | 21.09 | 0.75 | 0.10 | 0.68 | 0.96 | 0.72 |
pooled | 205 | 21.58 | 72.37 | 2.37 | 16.08 | 10.66 | 0.86 | 0.06 | 0.85 | 0.99 | 0.86 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 80 | 8.50 | 67.69 | 1.30 | 17.68 | 11.91 | 0.83 | 0.08 | 0.82 | 1.00 | 0.82 |
target_2014 | 75 | 8.81 | 74.61 | 1.77 | 18.96 | 14.30 | 0.84 | 0.09 | 0.80 | 0.97 | 0.83 |
target_2015 | 77 | 8.45 | 69.17 | 2.16 | 19.20 | 12.87 | 0.77 | 0.12 | 0.74 | 0.99 | 0.75 |
target_2016 | 77 | 8.14 | 75.22 | 1.02 | 15.77 | 11.54 | 0.90 | 0.10 | 0.87 | 0.97 | 0.90 |
target_2017 | 74 | 8.22 | 78.20 | -2.00 | 15.71 | 12.42 | 0.90 | 0.11 | 0.88 | 0.97 | 0.90 |
target_2018 | 77 | 7.81 | 70.36 | 3.37 | 21.36 | 14.98 | 0.76 | 0.13 | 0.75 | 0.99 | 0.76 |
target_2019 | 76 | 7.83 | 78.07 | -1.03 | 22.99 | 16.55 | 0.78 | 0.11 | 0.71 | 0.96 | 0.75 |
pooled | 85 | 52.04 | 70.34 | 2.29 | 12.24 | 8.46 | 0.90 | 0.07 | 0.89 | 0.98 | 0.91 |
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2021, July 15). CAFRI Labs: Landsat:FIA (Mask less) Map Accuracy. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatfia-mask-less-map-accuracy/
BibTeX citation
@misc{johnson2021landsat:fia, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat:FIA (Mask less) Map Accuracy}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatfia-mask-less-map-accuracy/}, year = {2021} }