Map accuracy/agreement assessment following the Riemann et. al. framework.
Map accuracy assessment for Landsat models trained directly on FIA plot data for the years 2013-2019.
Branch used to produce this document: lj_landsat-fia-0.0.5-holdout
No masking applied.
LCPRI | Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | pooled | 137 | NA | 6.42 | 4.59 | 20.83 | 11.70 | 0.32 | 0.88 | 0.00 | 0.76 | 0.09 |
2 | pooled | 334 | NA | 9.34 | 3.39 | 22.65 | 12.52 | 0.29 | 0.78 | 0.00 | 0.58 | -0.05 |
3 | pooled | 17 | NA | 33.89 | 6.72 | 40.69 | 29.67 | 0.34 | 0.35 | 0.00 | 0.66 | 0.21 |
4 | pooled | 715 | NA | 130.42 | 0.84 | 56.24 | 44.42 | 0.35 | 0.19 | 0.00 | 0.38 | -0.05 |
5 | pooled | 25 | NA | 9.99 | 3.07 | 11.18 | 7.30 | 0.83 | 0.84 | 0.75 | 0.91 | 0.85 |
6 | pooled | 85 | NA | 72.52 | 4.34 | 53.85 | 42.91 | 0.47 | 0.29 | 0.02 | 0.70 | 0.32 |
8 | pooled | 3 | NA | 0.00 | 9.17 | 11.88 | 9.17 | NA | 1.00 | 0.05 | NA | NA |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2014 | 179 | NA | 87.65 | -0.31 | 51.15 | 35.42 | 0.63 | 0.31 | 0.42 | 0.91 | 0.51 |
target_2015 | 195 | NA | 76.56 | 5.30 | 49.27 | 35.31 | 0.63 | 0.33 | 0.50 | 0.92 | 0.58 |
target_2016 | 201 | NA | 81.73 | 2.72 | 41.39 | 28.49 | 0.72 | 0.32 | 0.64 | 0.97 | 0.68 |
target_2017 | 166 | NA | 75.28 | 3.32 | 47.91 | 32.15 | 0.71 | 0.37 | 0.58 | 0.91 | 0.67 |
target_2018 | 190 | NA | 71.00 | 3.87 | 43.36 | 30.19 | 0.68 | 0.39 | 0.60 | 0.96 | 0.64 |
target_2019 | 168 | NA | 87.65 | -4.56 | 42.51 | 29.42 | 0.78 | 0.35 | 0.69 | 0.92 | 0.77 |
pooled | 1316 | NA | 79.21 | 2.24 | 45.88 | 31.85 | 0.68 | 0.34 | 0.56 | 0.94 | 0.63 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2014 | 178 | 1.01 | 87.09 | 0.05 | 51.00 | 35.26 | 0.63 | 0.31 | 0.42 | 0.91 | 0.51 |
target_2015 | 187 | 1.04 | 75.73 | 6.39 | 49.28 | 35.28 | 0.63 | 0.33 | 0.52 | 0.92 | 0.60 |
target_2016 | 192 | 1.05 | 81.51 | 2.50 | 41.25 | 28.25 | 0.71 | 0.32 | 0.64 | 0.97 | 0.67 |
target_2017 | 163 | 1.02 | 75.14 | 3.36 | 47.70 | 31.79 | 0.71 | 0.37 | 0.58 | 0.91 | 0.67 |
target_2018 | 185 | 1.03 | 71.01 | 3.13 | 42.77 | 29.99 | 0.69 | 0.39 | 0.61 | 0.96 | 0.65 |
target_2019 | 163 | 1.03 | 87.55 | -4.97 | 42.99 | 29.69 | 0.78 | 0.34 | 0.68 | 0.91 | 0.77 |
pooled | 820 | 1.34 | 79.25 | 2.51 | 41.94 | 29.46 | 0.70 | 0.29 | 0.60 | 0.94 | 0.65 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2014 | 120 | 1.49 | 81.70 | 1.24 | 45.83 | 29.87 | 0.65 | 0.28 | 0.49 | 0.94 | 0.55 |
target_2015 | 121 | 1.61 | 73.38 | 8.96 | 43.12 | 32.45 | 0.60 | 0.26 | 0.56 | 0.96 | 0.60 |
target_2016 | 126 | 1.60 | 76.59 | 3.06 | 35.72 | 23.74 | 0.73 | 0.27 | 0.69 | 0.98 | 0.71 |
target_2017 | 112 | 1.48 | 70.99 | 5.27 | 40.35 | 28.37 | 0.71 | 0.29 | 0.64 | 0.94 | 0.69 |
target_2018 | 134 | 1.42 | 71.38 | 4.21 | 41.45 | 28.97 | 0.67 | 0.33 | 0.59 | 0.96 | 0.63 |
target_2019 | 118 | 1.42 | 85.86 | -3.90 | 38.50 | 26.78 | 0.79 | 0.28 | 0.68 | 0.91 | 0.77 |
pooled | 196 | 5.61 | 75.94 | 2.29 | 23.84 | 17.96 | 0.80 | 0.10 | 0.77 | 0.97 | 0.79 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2014 | 67 | 2.67 | 79.90 | 1.08 | 28.11 | 21.43 | 0.81 | 0.16 | 0.76 | 0.97 | 0.79 |
target_2015 | 63 | 3.10 | 69.75 | 9.49 | 33.11 | 26.34 | 0.63 | 0.24 | 0.59 | 0.93 | 0.66 |
target_2016 | 68 | 2.96 | 74.36 | 5.27 | 23.94 | 17.75 | 0.81 | 0.16 | 0.80 | 0.98 | 0.82 |
target_2017 | 65 | 2.55 | 73.37 | 5.00 | 34.67 | 24.47 | 0.74 | 0.18 | 0.66 | 0.94 | 0.73 |
target_2018 | 66 | 2.88 | 70.03 | 4.34 | 28.01 | 22.12 | 0.77 | 0.18 | 0.73 | 0.96 | 0.77 |
target_2019 | 65 | 2.58 | 87.11 | -3.87 | 30.38 | 21.46 | 0.83 | 0.14 | 0.74 | 0.91 | 0.83 |
pooled | 79 | 13.91 | 74.68 | 4.84 | 19.66 | 13.56 | 0.80 | 0.11 | 0.78 | 0.97 | 0.82 |
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2021, July 29). CAFRI Labs: Landsat:FIA v0.0.5 Map Accuracy - Holdout Plots Only. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatfia-v005-map-accuracy-holdout-plots-only/
BibTeX citation
@misc{johnson2021landsat:fia, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat:FIA v0.0.5 Map Accuracy - Holdout Plots Only}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatfia-v005-map-accuracy-holdout-plots-only/}, year = {2021} }