Hudak-method models using LiDAR surfaces masked by both LCMAP and AOA. 2022-03-22
Last iteration: 2022-03-22 - Landsat AGB 0.0.7: Forced 0s
| RF (ranger) | GBM (LightGBM) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
|---|---|---|---|---|
| RMSE | 38.315 | 38.187 | 36.989 | 36.878 | 
| RMSE % | 27.202 | 27.112 | 26.261 | 26.182 | 
| MBE | -2.168 | -9.205 | -7.341 | -5.757 | 
| R2 | 0.783 | 0.792 | 0.802 | 0.802 | 
summary(bind_rows(training, testing)$agb_mgha)
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
  0.00673  70.70000 141.00000 140.86577 212.00000 280.45026 
| RMSE | Min | Median | Max | 
|---|---|---|---|
| Rf | 34.045 | 34.876 | 35.456 | 
| Lgb | 32.603 | 33.384 | 33.901 | 
| Ensemble | 32.218 | 32.963 | 33.534 | 
| R2 | Min | Median | Max | 
|---|---|---|---|
| rf | 0.810 | 0.816 | 0.826 | 
| lgb | 0.826 | 0.831 | 0.839 | 
| ensemble | 0.831 | 0.836 | 0.843 | 
      lgb        rf 
0.5100569 0.4899431 
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred, data = pred_values)
Residuals:
     Min       1Q   Median       3Q      Max 
-190.091  -16.215   -0.639   17.001  185.827 
Coefficients:
                     Estimate   Std. Error t value        Pr(>|t|)
(Intercept)      -2.075665890  0.108583211 -19.116         < 2e-16
rf_pred           0.355271651  0.001971459 180.207         < 2e-16
lgb_pred          0.649312190  0.001865869 347.994         < 2e-16
rf_pred:lgb_pred  0.000036750  0.000005643   6.513 0.0000000000737
                    
(Intercept)      ***
rf_pred          ***
lgb_pred         ***
rf_pred:lgb_pred ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 32.79 on 1199996 degrees of freedom
Multiple R-squared:  0.8369,    Adjusted R-squared:  0.8369 
F-statistic: 2.052e+06 on 3 and 1199996 DF,  p-value: < 2.2e-16
Random forest:
$num.trees
[1] 1000
$mtry
[1] 11
$min.node.size
[1] 2
$sample.fraction
[1] 1
$splitrule
[1] "variance"
$replace
[1] FALSE
$formula
agb_mgha ~ .
LGB:
$params
$params$num_leaves
[1] 18
$params$max_depth
[1] -1
$params$extra_trees
[1] FALSE
$params$min_data_in_leaf
[1] 10
$params$bagging_fraction
[1] 0.8
$params$bagging_freq
[1] 1
$params$feature_fraction
[1] 0.9
$params$min_data_in_bin
[1] 8
$params$lambda_l1
[1] 6
$params$lambda_l2
[1] 7
$params$learning_rate
[1] 0.1
$params$force_col_wise
[1] TRUE
$params$nrounds
[1] 6000
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Mahoney (2022, March 22). CAFRI Labs: Landsat:LiDAR AGB 0.0.8: Another One. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-008-another-one/
BibTeX citation
@misc{mahoney2022landsat:lidar,
  author = {Mahoney, Mike},
  title = {CAFRI Labs: Landsat:LiDAR AGB 0.0.8: Another One},
  url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-008-another-one/},
  year = {2022}
}