Last iteration: 2022-04-11 - Landsat AGB 0.0.99: Final Countdown
This version adds 65 indices and their respective 1 year deltas (130 predictors) computed through awesome spectral indices library.
Document includes comparisons against Landsat-FIA test plots
RF (ranger) | GBM (LightGBM) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|
%RMSE | 25.989 | 24.215 | 23.963 | 24.179 |
RMSE | 36.597 | 34.099 | 33.745 | 34.049 |
MAE | 28.644 | 26.288 | 25.846 | 26.428 |
MBE | -0.041 | 0.043 | -0.049 | 0.002 |
R2 | 0.801 | 0.824 | 0.827 | 0.825 |
RF (ranger) | GBM (LightGBM) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|
%RMSE | 41.001 | 40.263 | 39.928 | 39.778 |
RMSE | 56.324 | 55.311 | 54.850 | 54.645 |
MAE | 44.004 | 41.756 | 41.554 | 41.602 |
MBE | 5.598 | -9.391 | -5.370 | -2.145 |
R2 | 0.326 | 0.362 | 0.361 | 0.358 |
RF (ranger) | GBM (LightGBM) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|
%RMSE | 43.648 | 41.794 | 41.944 | 42.165 |
RMSE | 55.161 | 52.818 | 53.007 | 53.286 |
MAE | 42.976 | 40.570 | 40.660 | 41.212 |
MBE | 7.721 | 3.034 | 3.769 | 5.300 |
R2 | 0.473 | 0.508 | 0.506 | 0.503 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00721 70.68408 141.33738 140.87515 212.00599 279.53638
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred, data = k_fold_preds)
Residuals:
Min 1Q Median 3Q Max
-173.449 -20.012 -0.395 20.508 154.379
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.332e+00 1.306e+00 -2.551 0.0108 *
rf_pred 3.173e-01 2.263e-02 14.019 <2e-16 ***
lgb_pred 6.788e-01 2.110e-02 32.164 <2e-16 ***
rf_pred:lgb_pred 1.548e-04 7.071e-05 2.189 0.0286 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 33.87 on 9996 degrees of freedom
Multiple R-squared: 0.8257, Adjusted R-squared: 0.8257
F-statistic: 1.579e+04 on 3 and 9996 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 2750
$mtry
[1] 54
$min.node.size
[1] 4
$sample.fraction
[1] 1
$replace
[1] FALSE
$formula
agb_mgha ~ .
LGB:
$params
$params$num_leaves
[1] 40
$params$max_depth
[1] 8
$params$extra_trees
[1] TRUE
$params$min_data_in_leaf
[1] 10
$params$bagging_fraction
[1] 0.3
$params$bagging_freq
[1] 0
$params$feature_fraction
[1] 0.6
$params$min_data_in_bin
[1] 13
$params$lambda_l1
[1] 7
$params$lambda_l2
[1] 8
$params$learning_rate
[1] 0.1
$params$force_col_wise
[1] TRUE
$params$nrounds
[1] 1000
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2022, Sept. 8). CAFRI Labs: Landsat:LiDAR AGB 1.1.0 More data = more better. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-110-more-data-more-better/
BibTeX citation
@misc{johnson2022landsat:lidar, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat:LiDAR AGB 1.1.0 More data = more better}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-110-more-data-more-better/}, year = {2022} }