Last iteration: 2022-09-08 - Landsat LiDAR 1.1.0: More data = more better
RF (ranger) | GBM (LightGBM) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|
%RMSE | 31.064 | 28.419 | 28.005 | 28.395 |
RMSE | 43.744 | 40.020 | 39.436 | 39.986 |
MAE | 34.744 | 30.994 | 30.356 | 31.217 |
MBE | -0.444 | -0.050 | -0.344 | -0.237 |
R2 | 0.724 | 0.757 | 0.764 | 0.763 |
RF (ranger) | GBM (LightGBM) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|
%RMSE | 43.059 | 42.096 | 42.164 | 41.909 |
RMSE | 59.152 | 57.830 | 57.923 | 57.572 |
MAE | 46.503 | 44.709 | 44.711 | 44.942 |
MBE | 5.999 | 2.430 | 1.858 | 4.122 |
R2 | 0.255 | 0.291 | 0.288 | 0.291 |
RF (ranger) | GBM (LightGBM) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|
%RMSE | 46.209 | 44.423 | 44.499 | 44.497 |
RMSE | 58.397 | 56.140 | 56.236 | 56.234 |
MAE | 45.790 | 42.869 | 42.910 | 43.661 |
MBE | 8.738 | 3.976 | 3.580 | 6.233 |
R2 | 0.411 | 0.447 | 0.444 | 0.448 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00721 70.68408 141.33738 140.87515 212.00599 279.53638
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred, data = k_fold_preds)
Residuals:
Min 1Q Median 3Q Max
-179.487 -24.874 0.308 25.569 165.644
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.040e+00 1.691e+00 -1.207 0.228
rf_pred 2.571e-01 2.301e-02 11.175 < 2e-16 ***
lgb_pred 6.532e-01 2.286e-02 28.573 < 2e-16 ***
rf_pred:lgb_pred 6.087e-04 9.522e-05 6.392 1.71e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 39.67 on 9996 degrees of freedom
Multiple R-squared: 0.761, Adjusted R-squared: 0.7609
F-statistic: 1.061e+04 on 3 and 9996 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 750
$mtry
[1] 48
$min.node.size
[1] 1
$sample.fraction
[1] 1
$replace
[1] FALSE
$formula
agb_mgha ~ .
LGB:
$params
$params$num_leaves
[1] 16
$params$max_depth
[1] 4
$params$extra_trees
[1] TRUE
$params$min_data_in_leaf
[1] 10
$params$bagging_fraction
[1] 0.3
$params$bagging_freq
[1] 0
$params$feature_fraction
[1] 1
$params$min_data_in_bin
[1] 2
$params$lambda_l1
[1] 7
$params$lambda_l2
[1] 5
$params$learning_rate
[1] 0.1
$params$force_col_wise
[1] TRUE
$params$nrounds
[1] 1500
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2022, Sept. 18). CAFRI Labs: Landsat:LiDAR AGB 1.1.2 PCA (less data more faster). Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-112-pca-less-data-more-faster/
BibTeX citation
@misc{johnson2022landsat:lidar, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat:LiDAR AGB 1.1.2 PCA (less data more faster)}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-112-pca-less-data-more-faster/}, year = {2022} }