Map accuracy/agreement assessment following the Riemann et. al. framework.
Map accuracy assessment for the model-weighted-ensemble Landsat model trained on LiDAR-AGB surfaces. FIA data inventoried between 2013 and 2019 were considered for this assessment.
Branch used to produce this document: lj_landsat-lidar-agb
LCMAP Collection 1.1. primary classification layers were used to mask out non-forested (class != 4) pixels from the modeled AGB surfaces. Annual AGB surfaces were matched to the LMCAP layer from the same year.
NOTE: Masked AGB pixels are set to 0, and included in the agreement assessment just as any other AGB pixel.
Masked classes:
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 680 | NA | 76.71 | -3.75 | 49.98 | 32.36 | 0.60 | 0.06 | 0.50 | 0.98 | 0.51 |
target_2014 | 661 | NA | 79.69 | -5.70 | 51.00 | 32.15 | 0.62 | 0.07 | 0.55 | 0.97 | 0.57 |
target_2015 | 651 | NA | 75.06 | -5.25 | 51.77 | 31.58 | 0.59 | 0.08 | 0.51 | 0.98 | 0.53 |
target_2016 | 628 | NA | 80.50 | -9.04 | 52.81 | 32.89 | 0.59 | 0.08 | 0.55 | 0.97 | 0.58 |
target_2017 | 608 | NA | 81.51 | -8.04 | 50.72 | 31.53 | 0.67 | 0.09 | 0.61 | 0.96 | 0.66 |
target_2018 | 601 | NA | 77.51 | -5.11 | 51.64 | 32.71 | 0.59 | 0.05 | 0.51 | 0.98 | 0.53 |
target_2019 | 595 | NA | 80.97 | -11.20 | 50.64 | 31.35 | 0.65 | 0.09 | 0.63 | 0.96 | 0.66 |
pooled | 4424 | NA | 78.79 | -6.79 | 51.22 | 32.09 | 0.62 | 0.06 | 0.55 | 0.97 | 0.58 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 645 | 1.05 | 76.51 | -3.52 | 50.23 | 32.56 | 0.59 | 0.06 | 0.48 | 0.98 | 0.49 |
target_2014 | 617 | 1.07 | 78.24 | -5.20 | 49.35 | 31.27 | 0.63 | 0.06 | 0.55 | 0.98 | 0.57 |
target_2015 | 574 | 1.13 | 74.87 | -4.58 | 50.63 | 31.03 | 0.59 | 0.06 | 0.50 | 0.98 | 0.52 |
target_2016 | 565 | 1.11 | 79.49 | -8.60 | 51.26 | 31.96 | 0.60 | 0.07 | 0.55 | 0.97 | 0.58 |
target_2017 | 568 | 1.07 | 82.36 | -8.11 | 50.36 | 31.34 | 0.67 | 0.09 | 0.61 | 0.96 | 0.65 |
target_2018 | 551 | 1.09 | 77.10 | -4.86 | 50.41 | 32.01 | 0.60 | 0.05 | 0.52 | 0.98 | 0.54 |
target_2019 | 520 | 1.14 | 81.27 | -11.91 | 50.22 | 31.00 | 0.64 | 0.09 | 0.62 | 0.96 | 0.67 |
pooled | 1502 | 2.95 | 77.24 | -6.75 | 34.94 | 23.79 | 0.69 | 0.05 | 0.67 | 0.98 | 0.69 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 190 | 3.58 | 71.43 | -3.30 | 28.38 | 20.60 | 0.72 | 0.08 | 0.69 | 1.00 | 0.70 |
target_2014 | 184 | 3.59 | 75.98 | -4.80 | 28.63 | 19.82 | 0.76 | 0.07 | 0.75 | 0.99 | 0.76 |
target_2015 | 184 | 3.54 | 70.38 | -3.87 | 30.00 | 21.39 | 0.68 | 0.07 | 0.65 | 0.99 | 0.66 |
target_2016 | 180 | 3.49 | 79.05 | -10.57 | 37.79 | 24.31 | 0.64 | 0.09 | 0.63 | 0.96 | 0.67 |
target_2017 | 182 | 3.34 | 79.84 | -9.76 | 34.13 | 23.78 | 0.74 | 0.09 | 0.73 | 0.97 | 0.76 |
target_2018 | 186 | 3.23 | 76.60 | -6.37 | 38.40 | 24.27 | 0.57 | 0.08 | 0.52 | 0.97 | 0.55 |
target_2019 | 179 | 3.32 | 80.30 | -10.26 | 36.29 | 25.85 | 0.67 | 0.12 | 0.66 | 0.97 | 0.69 |
pooled | 205 | 21.58 | 72.37 | -5.88 | 18.33 | 12.94 | 0.84 | 0.10 | 0.84 | 0.98 | 0.86 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 80 | 8.50 | 67.69 | -3.70 | 19.84 | 13.82 | 0.81 | 0.10 | 0.81 | 0.99 | 0.82 |
target_2014 | 75 | 8.81 | 74.61 | -7.05 | 23.70 | 14.92 | 0.76 | 0.13 | 0.77 | 0.98 | 0.79 |
target_2015 | 77 | 8.45 | 69.17 | -6.20 | 29.51 | 16.66 | 0.54 | 0.13 | 0.54 | 0.98 | 0.56 |
target_2016 | 77 | 8.16 | 75.20 | -8.54 | 21.76 | 14.71 | 0.83 | 0.18 | 0.83 | 0.97 | 0.86 |
target_2017 | 74 | 8.22 | 78.20 | -7.62 | 20.33 | 16.07 | 0.85 | 0.15 | 0.85 | 0.98 | 0.87 |
target_2018 | 77 | 7.81 | 70.36 | -2.53 | 23.21 | 16.82 | 0.73 | 0.08 | 0.71 | 1.00 | 0.71 |
target_2019 | 76 | 7.83 | 78.07 | -9.18 | 28.09 | 19.77 | 0.71 | 0.13 | 0.71 | 0.97 | 0.75 |
pooled | 85 | 52.05 | 70.34 | -6.10 | 14.71 | 11.08 | 0.88 | 0.15 | 0.88 | 0.98 | 0.90 |
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2021, July 12). CAFRI Labs: Landsat:LiDAR-AGB Map Accuracy. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-map-accuracy/
BibTeX citation
@misc{johnson2021landsat:lidar-agb, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat:LiDAR-AGB Map Accuracy}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-map-accuracy/}, year = {2021} }