Map accuracy/agreement assessment following the Riemann et. al. framework.
Map accuracy assessment for the v0.0.4 model-weighted-ensemble Landsat model trained on LiDAR-AGB surfaces. FIA data inventoried between 2013 and 2019 were considered for this assessment.
Branch used to produce this document: lj_landsat-lidar-0.0.4
LCMAP Collection 1.1. primary classification layers were used to mask out water, developed, and barren areas i.e. “!class %in% c(1, 5, 8)” pixels from the modeled AGB surfaces. Annual AGB surfaces were matched to the LMCAP layer from the same year.
NOTE: Masked AGB pixels are set to 0, and included in the agreement assessment just as any other AGB pixel.
Masked classes:
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 680 | NA | 76.71 | 12.50 | 49.57 | 37.61 | 0.61 | 0.24 | 0.56 | 0.93 | 0.63 |
target_2014 | 661 | NA | 79.69 | 12.11 | 51.83 | 38.95 | 0.62 | 0.26 | 0.55 | 0.92 | 0.63 |
target_2015 | 651 | NA | 75.06 | 15.04 | 50.51 | 38.26 | 0.63 | 0.29 | 0.60 | 0.92 | 0.68 |
target_2016 | 627 | NA | 80.54 | 10.62 | 49.12 | 37.57 | 0.65 | 0.25 | 0.57 | 0.92 | 0.65 |
target_2017 | 608 | NA | 81.51 | 10.75 | 52.67 | 39.61 | 0.65 | 0.27 | 0.56 | 0.91 | 0.66 |
target_2018 | 601 | NA | 77.51 | 12.89 | 50.62 | 38.38 | 0.62 | 0.29 | 0.56 | 0.92 | 0.64 |
target_2019 | 595 | NA | 80.97 | 9.58 | 48.21 | 37.35 | 0.68 | 0.28 | 0.60 | 0.92 | 0.68 |
pooled | 4423 | NA | 78.80 | 11.97 | 50.39 | 38.25 | 0.64 | 0.27 | 0.57 | 0.92 | 0.65 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 645 | 1.05 | 76.51 | 12.67 | 49.61 | 37.49 | 0.61 | 0.24 | 0.56 | 0.93 | 0.63 |
target_2014 | 617 | 1.07 | 78.24 | 12.70 | 50.32 | 38.03 | 0.62 | 0.26 | 0.57 | 0.92 | 0.64 |
target_2015 | 574 | 1.13 | 74.87 | 16.02 | 49.18 | 37.30 | 0.64 | 0.28 | 0.61 | 0.92 | 0.69 |
target_2016 | 564 | 1.11 | 79.54 | 11.07 | 48.09 | 36.50 | 0.65 | 0.25 | 0.59 | 0.93 | 0.66 |
target_2017 | 568 | 1.07 | 82.36 | 10.55 | 51.89 | 38.74 | 0.65 | 0.26 | 0.57 | 0.91 | 0.66 |
target_2018 | 551 | 1.09 | 77.10 | 13.39 | 49.58 | 37.71 | 0.63 | 0.29 | 0.58 | 0.92 | 0.66 |
target_2019 | 520 | 1.14 | 81.27 | 8.89 | 46.55 | 36.04 | 0.69 | 0.26 | 0.61 | 0.92 | 0.69 |
pooled | 1502 | 2.94 | 77.26 | 12.32 | 35.04 | 27.12 | 0.70 | 0.14 | 0.69 | 0.93 | 0.75 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 190 | 3.58 | 71.43 | 12.54 | 30.42 | 23.85 | 0.71 | 0.17 | 0.71 | 0.95 | 0.77 |
target_2014 | 184 | 3.59 | 75.98 | 14.20 | 32.74 | 25.08 | 0.73 | 0.17 | 0.72 | 0.93 | 0.79 |
target_2015 | 184 | 3.54 | 70.38 | 16.96 | 34.34 | 26.63 | 0.67 | 0.20 | 0.67 | 0.90 | 0.77 |
target_2016 | 180 | 3.48 | 79.06 | 10.13 | 33.94 | 25.90 | 0.71 | 0.16 | 0.67 | 0.92 | 0.75 |
target_2017 | 182 | 3.34 | 79.84 | 9.17 | 34.41 | 26.97 | 0.73 | 0.16 | 0.69 | 0.94 | 0.75 |
target_2018 | 186 | 3.23 | 76.60 | 12.42 | 34.57 | 26.55 | 0.68 | 0.17 | 0.65 | 0.92 | 0.73 |
target_2019 | 179 | 3.32 | 80.30 | 10.47 | 34.50 | 26.18 | 0.70 | 0.15 | 0.66 | 0.94 | 0.73 |
pooled | 205 | 21.58 | 72.37 | 14.40 | 24.19 | 17.81 | 0.79 | 0.18 | 0.78 | 0.92 | 0.86 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 80 | 8.50 | 67.69 | 11.92 | 24.64 | 17.38 | 0.75 | 0.19 | 0.77 | 0.95 | 0.82 |
target_2014 | 75 | 8.81 | 74.61 | 12.27 | 25.21 | 20.18 | 0.77 | 0.20 | 0.75 | 0.91 | 0.84 |
target_2015 | 77 | 8.45 | 69.17 | 14.91 | 25.23 | 19.83 | 0.74 | 0.21 | 0.74 | 0.91 | 0.83 |
target_2016 | 77 | 8.14 | 75.22 | 12.51 | 22.06 | 17.52 | 0.86 | 0.16 | 0.83 | 0.93 | 0.90 |
target_2017 | 74 | 8.22 | 78.20 | 10.26 | 21.36 | 17.30 | 0.85 | 0.16 | 0.83 | 0.95 | 0.88 |
target_2018 | 77 | 7.81 | 70.36 | 15.70 | 26.82 | 19.87 | 0.74 | 0.22 | 0.74 | 0.91 | 0.84 |
target_2019 | 76 | 7.83 | 78.07 | 12.05 | 30.01 | 22.75 | 0.68 | 0.20 | 0.67 | 0.92 | 0.74 |
pooled | 85 | 52.04 | 70.34 | 14.23 | 20.64 | 16.33 | 0.85 | 0.20 | 0.81 | 0.90 | 0.91 |
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2021, July 15). CAFRI Labs: Landsat:LiDAR-AGB v0.0.4 Map Accuracy. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-v004-map-accuracy/
BibTeX citation
@misc{johnson2021landsat:lidar-agb, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat:LiDAR-AGB v0.0.4 Map Accuracy}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-v004-map-accuracy/}, year = {2021} }