Map accuracy/agreement assessment following the Riemann et. al. framework.
Map accuracy assessment for the v0.0.5 model-weighted-ensemble Landsat model trained on LiDAR-AGB surfaces. FIA data inventoried between 2013 and 2019 were considered for this assessment.
Branch used to produce this document: lj_landsat-lidar-0.0.5
No masking applied.
LCPRI | Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | pooled | 426 | NA | 7.15 | 51.75 | 60.23 | 53.88 | 0.09 | 0.90 | 0.24 | 0.44 | 0.80 |
2 | pooled | 1139 | NA | 9.62 | 24.17 | 33.94 | 29.27 | 0.26 | 0.81 | 0.29 | 0.59 | 0.70 |
3 | pooled | 94 | NA | 30.76 | 25.44 | 39.50 | 34.20 | 0.48 | 0.53 | 0.48 | 0.72 | 0.76 |
4 | pooled | 2374 | NA | 130.61 | 11.18 | 59.18 | 47.55 | 0.31 | 0.20 | 0.00 | 0.66 | 0.21 |
5 | pooled | 105 | NA | 11.04 | 57.06 | 66.35 | 58.34 | 0.14 | 0.85 | 0.29 | 0.48 | 0.82 |
6 | pooled | 254 | NA | 79.95 | 6.51 | 57.57 | 46.03 | 0.41 | 0.28 | 0.00 | 0.64 | 0.28 |
8 | pooled | 14 | NA | 7.68 | 41.61 | 45.48 | 41.76 | 0.11 | 0.86 | 0.27 | 0.39 | 0.89 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 678 | NA | 76.94 | 21.59 | 52.97 | 43.01 | 0.61 | 0.33 | 0.58 | 0.87 | 0.71 |
target_2014 | 657 | NA | 80.18 | 20.09 | 54.71 | 44.19 | 0.62 | 0.36 | 0.56 | 0.86 | 0.70 |
target_2015 | 648 | NA | 75.41 | 22.17 | 53.27 | 42.95 | 0.63 | 0.39 | 0.60 | 0.87 | 0.73 |
target_2016 | 626 | NA | 80.67 | 18.57 | 52.09 | 42.34 | 0.64 | 0.35 | 0.58 | 0.87 | 0.72 |
target_2017 | 604 | NA | 82.05 | 17.98 | 55.68 | 44.92 | 0.64 | 0.37 | 0.56 | 0.85 | 0.71 |
target_2018 | 599 | NA | 77.77 | 20.67 | 54.01 | 43.23 | 0.61 | 0.37 | 0.57 | 0.88 | 0.70 |
target_2019 | 594 | NA | 81.10 | 16.28 | 52.31 | 42.48 | 0.65 | 0.38 | 0.58 | 0.87 | 0.71 |
pooled | 4406 | NA | 79.10 | 19.69 | 53.59 | 43.30 | 0.63 | 0.36 | 0.58 | 0.87 | 0.71 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 643 | 1.05 | 76.75 | 21.76 | 53.11 | 43.03 | 0.60 | 0.33 | 0.57 | 0.87 | 0.70 |
target_2014 | 614 | 1.07 | 78.72 | 20.81 | 53.23 | 43.15 | 0.62 | 0.35 | 0.58 | 0.87 | 0.71 |
target_2015 | 571 | 1.13 | 75.27 | 22.97 | 51.75 | 41.79 | 0.64 | 0.37 | 0.62 | 0.88 | 0.74 |
target_2016 | 564 | 1.11 | 79.54 | 19.25 | 51.58 | 41.75 | 0.64 | 0.35 | 0.59 | 0.87 | 0.72 |
target_2017 | 566 | 1.07 | 82.98 | 17.63 | 54.95 | 43.90 | 0.65 | 0.36 | 0.56 | 0.85 | 0.71 |
target_2018 | 550 | 1.09 | 77.42 | 20.91 | 52.97 | 42.53 | 0.62 | 0.37 | 0.59 | 0.88 | 0.71 |
target_2019 | 519 | 1.14 | 81.43 | 15.71 | 51.12 | 41.22 | 0.65 | 0.36 | 0.58 | 0.87 | 0.71 |
pooled | 1502 | 2.93 | 77.59 | 20.12 | 39.39 | 31.82 | 0.69 | 0.21 | 0.67 | 0.87 | 0.80 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 189 | 3.59 | 71.94 | 24.03 | 37.95 | 30.46 | 0.67 | 0.25 | 0.66 | 0.84 | 0.82 |
target_2014 | 184 | 3.57 | 76.32 | 22.23 | 36.31 | 30.17 | 0.75 | 0.25 | 0.71 | 0.86 | 0.85 |
target_2015 | 183 | 3.54 | 70.96 | 24.49 | 39.37 | 31.47 | 0.64 | 0.26 | 0.64 | 0.83 | 0.81 |
target_2016 | 180 | 3.48 | 79.11 | 18.18 | 38.57 | 30.99 | 0.70 | 0.24 | 0.63 | 0.83 | 0.80 |
target_2017 | 182 | 3.32 | 80.10 | 18.04 | 40.33 | 32.51 | 0.69 | 0.24 | 0.64 | 0.85 | 0.78 |
target_2018 | 186 | 3.22 | 77.12 | 21.09 | 41.20 | 31.98 | 0.62 | 0.25 | 0.60 | 0.84 | 0.76 |
target_2019 | 179 | 3.32 | 80.40 | 17.53 | 39.66 | 30.39 | 0.65 | 0.22 | 0.61 | 0.87 | 0.74 |
pooled | 204 | 21.60 | 73.01 | 22.91 | 30.80 | 24.37 | 0.77 | 0.27 | 0.71 | 0.82 | 0.89 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 80 | 8.47 | 67.72 | 26.75 | 35.37 | 27.48 | 0.70 | 0.32 | 0.66 | 0.78 | 0.88 |
target_2014 | 75 | 8.76 | 75.06 | 20.82 | 30.94 | 26.10 | 0.77 | 0.25 | 0.71 | 0.84 | 0.88 |
target_2015 | 77 | 8.42 | 69.65 | 24.73 | 35.41 | 28.94 | 0.60 | 0.30 | 0.61 | 0.79 | 0.82 |
target_2016 | 77 | 8.13 | 75.35 | 21.68 | 29.33 | 23.84 | 0.85 | 0.25 | 0.76 | 0.84 | 0.92 |
target_2017 | 74 | 8.16 | 78.54 | 18.87 | 28.38 | 23.24 | 0.82 | 0.26 | 0.75 | 0.86 | 0.90 |
target_2018 | 77 | 7.78 | 70.76 | 25.18 | 35.83 | 27.51 | 0.65 | 0.26 | 0.65 | 0.81 | 0.84 |
target_2019 | 76 | 7.82 | 78.22 | 20.24 | 37.95 | 28.32 | 0.57 | 0.29 | 0.57 | 0.83 | 0.74 |
pooled | 85 | 51.84 | 70.63 | 24.37 | 31.69 | 25.22 | 0.72 | 0.35 | 0.66 | 0.78 | 0.89 |
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2021, July 21). CAFRI Labs: Landsat:LiDAR-AGB v0.0.5 Map Accuracy. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-v005-map-accuracy/
BibTeX citation
@misc{johnson2021landsat:lidar-agb, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat:LiDAR-AGB v0.0.5 Map Accuracy}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-v005-map-accuracy/}, year = {2021} }