Map accuracy/agreement assessment following the Riemann et. al. framework.
Map accuracy assessment for the v0.0.5 model-weighted-ensemble Landsat model trained on LiDAR-AGB surfaces. FIA data inventoried between 2013 and 2019 were considered for this assessment.
Branch used to produce this document: lj_landsat-lidar-0.0.5-holdout
No masking applied.
LCPRI | Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | pooled | 405 | NA | 6.03 | 52.86 | 61.04 | 54.68 | 0.05 | 0.91 | 0.21 | 0.40 | 0.81 |
2 | pooled | 967 | NA | 9.43 | 25.01 | 34.50 | 29.85 | 0.24 | 0.81 | 0.28 | 0.58 | 0.70 |
3 | pooled | 75 | NA | 29.73 | 24.55 | 39.26 | 33.92 | 0.49 | 0.56 | 0.47 | 0.71 | 0.76 |
4 | pooled | 1862 | NA | 129.80 | 11.99 | 60.21 | 48.41 | 0.30 | 0.20 | 0.00 | 0.65 | 0.22 |
5 | pooled | 100 | NA | 11.60 | 56.53 | 65.54 | 57.88 | 0.15 | 0.85 | 0.30 | 0.48 | 0.82 |
6 | pooled | 211 | NA | 77.91 | 9.27 | 57.43 | 46.31 | 0.43 | 0.30 | 0.02 | 0.64 | 0.38 |
8 | pooled | 12 | NA | 8.94 | 41.61 | 45.99 | 41.77 | 0.10 | 0.83 | 0.28 | 0.40 | 0.87 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2014 | 604 | NA | 78.49 | 20.16 | 53.94 | 43.56 | 0.63 | 0.37 | 0.57 | 0.86 | 0.71 |
target_2015 | 550 | NA | 71.95 | 23.61 | 54.27 | 43.65 | 0.62 | 0.41 | 0.60 | 0.87 | 0.73 |
target_2016 | 526 | NA | 77.50 | 19.83 | 52.52 | 42.80 | 0.65 | 0.38 | 0.60 | 0.86 | 0.74 |
target_2017 | 451 | NA | 77.24 | 18.91 | 56.52 | 46.00 | 0.65 | 0.42 | 0.56 | 0.83 | 0.72 |
target_2018 | 403 | NA | 72.74 | 23.93 | 56.13 | 45.42 | 0.61 | 0.42 | 0.57 | 0.85 | 0.72 |
target_2019 | 420 | NA | 69.33 | 22.51 | 54.26 | 44.59 | 0.63 | 0.45 | 0.59 | 0.86 | 0.73 |
pooled | 3632 | NA | 75.21 | 21.44 | 54.22 | 43.99 | 0.63 | 0.39 | 0.58 | 0.86 | 0.72 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2014 | 565 | 1.07 | 76.82 | 21.01 | 52.21 | 42.41 | 0.63 | 0.36 | 0.59 | 0.87 | 0.72 |
target_2015 | 490 | 1.12 | 71.64 | 24.55 | 52.72 | 42.35 | 0.63 | 0.39 | 0.61 | 0.87 | 0.74 |
target_2016 | 478 | 1.10 | 76.55 | 20.38 | 51.98 | 42.39 | 0.65 | 0.38 | 0.60 | 0.87 | 0.74 |
target_2017 | 424 | 1.06 | 78.32 | 18.52 | 55.98 | 45.17 | 0.66 | 0.41 | 0.56 | 0.83 | 0.73 |
target_2018 | 377 | 1.07 | 71.60 | 24.81 | 54.45 | 44.03 | 0.62 | 0.41 | 0.60 | 0.86 | 0.74 |
target_2019 | 382 | 1.10 | 69.81 | 22.30 | 53.93 | 44.13 | 0.63 | 0.43 | 0.59 | 0.86 | 0.73 |
pooled | 1351 | 2.19 | 74.66 | 22.16 | 45.18 | 36.48 | 0.65 | 0.27 | 0.63 | 0.86 | 0.77 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2014 | 180 | 3.36 | 73.39 | 23.67 | 38.25 | 31.29 | 0.72 | 0.27 | 0.69 | 0.85 | 0.84 |
target_2015 | 173 | 3.18 | 69.61 | 25.72 | 42.30 | 34.20 | 0.61 | 0.29 | 0.61 | 0.83 | 0.79 |
target_2016 | 171 | 3.08 | 76.95 | 19.65 | 41.87 | 33.20 | 0.68 | 0.24 | 0.61 | 0.83 | 0.78 |
target_2017 | 165 | 2.73 | 73.77 | 20.81 | 42.49 | 33.96 | 0.66 | 0.27 | 0.62 | 0.84 | 0.78 |
target_2018 | 160 | 2.52 | 69.44 | 26.89 | 44.36 | 35.43 | 0.63 | 0.29 | 0.62 | 0.82 | 0.80 |
target_2019 | 162 | 2.59 | 66.60 | 25.48 | 42.93 | 35.09 | 0.64 | 0.31 | 0.64 | 0.85 | 0.79 |
pooled | 203 | 14.55 | 69.40 | 24.89 | 33.76 | 27.09 | 0.72 | 0.29 | 0.67 | 0.80 | 0.87 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2014 | 74 | 8.16 | 73.38 | 21.60 | 34.09 | 28.25 | 0.72 | 0.28 | 0.66 | 0.81 | 0.85 |
target_2015 | 76 | 7.24 | 69.19 | 26.55 | 41.22 | 32.16 | 0.47 | 0.33 | 0.52 | 0.77 | 0.74 |
target_2016 | 75 | 7.01 | 73.60 | 22.34 | 34.39 | 28.04 | 0.76 | 0.24 | 0.71 | 0.85 | 0.87 |
target_2017 | 72 | 6.26 | 73.94 | 21.19 | 33.64 | 27.77 | 0.72 | 0.33 | 0.69 | 0.84 | 0.85 |
target_2018 | 74 | 5.45 | 63.59 | 29.35 | 40.82 | 31.53 | 0.62 | 0.30 | 0.63 | 0.80 | 0.83 |
target_2019 | 75 | 5.60 | 64.86 | 27.57 | 41.52 | 33.18 | 0.61 | 0.29 | 0.62 | 0.80 | 0.81 |
pooled | 83 | 35.59 | 70.45 | 24.21 | 34.69 | 27.30 | 0.63 | 0.34 | 0.61 | 0.78 | 0.83 |
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2021, July 29). CAFRI Labs: Landsat:LiDAR-AGB v0.0.5 Map Accuracy - Holdout Plots Only. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-v005-map-accuracy-holdout-plots-only/
BibTeX citation
@misc{johnson2021landsat:lidar-agb, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat:LiDAR-AGB v0.0.5 Map Accuracy - Holdout Plots Only}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-v005-map-accuracy-holdout-plots-only/}, year = {2021} }