Map accuracy/agreement assessment following the Riemann et. al. framework.
Map accuracy assessment for the v0.0.6 model-weighted-ensemble Landsat model trained on LiDAR-AGB surfaces. FIA data inventoried between 2013 and 2019 were considered for this assessment.
Branch used to produce this document: lj_landsat-lidar-0.0.6
No masking applied.
LCPRI | Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | pooled | 426 | NA | 7.15 | 30.83 | 41.75 | 34.21 | 0.12 | 0.87 | 0.23 | 0.58 | 0.65 |
2 | pooled | 1139 | NA | 9.62 | 6.40 | 23.53 | 14.74 | 0.30 | 0.77 | 0.00 | 0.67 | 0.22 |
3 | pooled | 94 | NA | 30.76 | 12.87 | 35.56 | 28.33 | 0.38 | 0.40 | 0.32 | 0.82 | 0.50 |
4 | pooled | 2374 | NA | 130.61 | -5.73 | 59.57 | 46.31 | 0.29 | 0.24 | 0.00 | 0.29 | 0.03 |
5 | pooled | 105 | NA | 11.04 | 7.66 | 21.10 | 12.14 | 0.56 | 0.72 | 0.56 | 0.94 | 0.62 |
6 | pooled | 254 | NA | 79.95 | -10.96 | 58.12 | 42.99 | 0.43 | 0.22 | 0.00 | 0.57 | 0.42 |
8 | pooled | 14 | NA | 7.68 | 7.15 | 14.68 | 11.24 | 0.46 | 0.79 | 0.45 | 0.83 | 0.63 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 678 | NA | 76.94 | 4.08 | 48.27 | 35.52 | 0.62 | 0.31 | 0.42 | 0.87 | 0.55 |
target_2014 | 657 | NA | 80.18 | 2.10 | 51.60 | 36.59 | 0.61 | 0.33 | 0.34 | 0.83 | 0.51 |
target_2015 | 648 | NA | 75.41 | 3.47 | 49.79 | 35.70 | 0.62 | 0.34 | 0.41 | 0.87 | 0.54 |
target_2016 | 626 | NA | 80.67 | 0.57 | 48.59 | 34.95 | 0.65 | 0.32 | 0.41 | 0.86 | 0.55 |
target_2017 | 604 | NA | 82.05 | -1.52 | 52.66 | 37.29 | 0.65 | 0.35 | 0.38 | 0.81 | 0.57 |
target_2018 | 599 | NA | 77.77 | 2.60 | 48.06 | 33.93 | 0.64 | 0.35 | 0.45 | 0.88 | 0.57 |
target_2019 | 594 | NA | 81.10 | -2.10 | 47.69 | 34.21 | 0.69 | 0.35 | 0.49 | 0.86 | 0.64 |
pooled | 4406 | NA | 79.10 | 1.39 | 49.56 | 35.47 | 0.64 | 0.33 | 0.40 | 0.85 | 0.55 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 643 | 1.05 | 76.75 | 4.23 | 48.36 | 35.57 | 0.61 | 0.30 | 0.41 | 0.87 | 0.54 |
target_2014 | 614 | 1.07 | 78.72 | 2.72 | 49.46 | 35.25 | 0.62 | 0.32 | 0.38 | 0.85 | 0.53 |
target_2015 | 571 | 1.13 | 75.27 | 4.02 | 47.65 | 34.20 | 0.63 | 0.32 | 0.45 | 0.89 | 0.57 |
target_2016 | 564 | 1.11 | 79.54 | 1.17 | 47.64 | 34.27 | 0.65 | 0.32 | 0.42 | 0.87 | 0.55 |
target_2017 | 566 | 1.07 | 82.98 | -1.79 | 52.40 | 36.63 | 0.65 | 0.34 | 0.38 | 0.81 | 0.57 |
target_2018 | 550 | 1.09 | 77.42 | 2.68 | 47.07 | 33.31 | 0.65 | 0.35 | 0.47 | 0.89 | 0.58 |
target_2019 | 519 | 1.14 | 81.43 | -2.64 | 46.60 | 33.56 | 0.69 | 0.33 | 0.50 | 0.85 | 0.65 |
pooled | 1502 | 2.93 | 77.59 | 1.70 | 33.37 | 24.46 | 0.70 | 0.15 | 0.57 | 0.92 | 0.65 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 189 | 3.59 | 71.94 | 5.54 | 28.60 | 21.66 | 0.70 | 0.14 | 0.64 | 0.94 | 0.70 |
target_2014 | 184 | 3.57 | 76.32 | 3.09 | 28.44 | 21.63 | 0.77 | 0.16 | 0.67 | 0.92 | 0.75 |
target_2015 | 183 | 3.54 | 70.96 | 5.10 | 30.64 | 23.48 | 0.66 | 0.13 | 0.59 | 0.94 | 0.65 |
target_2016 | 180 | 3.48 | 79.11 | -0.31 | 33.90 | 23.69 | 0.70 | 0.12 | 0.49 | 0.86 | 0.62 |
target_2017 | 182 | 3.32 | 80.10 | -2.02 | 35.90 | 26.33 | 0.70 | 0.18 | 0.52 | 0.87 | 0.65 |
target_2018 | 186 | 3.22 | 77.12 | 2.23 | 33.95 | 24.87 | 0.66 | 0.13 | 0.49 | 0.89 | 0.60 |
target_2019 | 179 | 3.32 | 80.40 | -0.71 | 33.42 | 24.03 | 0.69 | 0.15 | 0.53 | 0.90 | 0.63 |
pooled | 204 | 21.60 | 73.01 | 3.75 | 19.58 | 13.73 | 0.80 | 0.10 | 0.77 | 0.96 | 0.80 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 80 | 8.47 | 67.72 | 7.22 | 19.77 | 14.86 | 0.81 | 0.15 | 0.80 | 0.95 | 0.85 |
target_2014 | 75 | 8.76 | 75.06 | 2.04 | 22.29 | 15.24 | 0.79 | 0.11 | 0.69 | 0.92 | 0.77 |
target_2015 | 77 | 8.42 | 69.65 | 5.82 | 27.90 | 18.19 | 0.54 | 0.12 | 0.50 | 0.95 | 0.54 |
target_2016 | 77 | 8.13 | 75.35 | 2.37 | 18.52 | 14.18 | 0.87 | 0.13 | 0.82 | 0.95 | 0.87 |
target_2017 | 74 | 8.16 | 78.54 | -0.95 | 19.80 | 16.23 | 0.84 | 0.11 | 0.77 | 0.94 | 0.83 |
target_2018 | 77 | 7.78 | 70.76 | 5.91 | 23.44 | 17.65 | 0.73 | 0.13 | 0.70 | 0.96 | 0.75 |
target_2019 | 76 | 7.82 | 78.22 | -0.37 | 26.17 | 18.90 | 0.72 | 0.12 | 0.57 | 0.91 | 0.66 |
pooled | 85 | 51.84 | 70.63 | 4.62 | 17.17 | 11.06 | 0.82 | 0.11 | 0.79 | 0.96 | 0.83 |
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2021, Aug. 23). CAFRI Labs: Landsat:LiDAR-AGB v0.0.6 Map Accuracy. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-v006-map-accuracy/
BibTeX citation
@misc{johnson2021landsat:lidar-agb, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat:LiDAR-AGB v0.0.6 Map Accuracy}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-v006-map-accuracy/}, year = {2021} }