Map accuracy/agreement assessment following the Riemann et. al. framework.
Map accuracy assessment for the v0.0.7 model-weighted-ensemble Landsat model trained on LiDAR-AGB surfaces. FIA data inventoried between 2013 and 2019 were considered for this assessment.
Branch used to produce this document: lj_landsat-lidar-0.0.7
LCMAP Collection 1.1. primary classification layers were used to mask out water, developed, and barren areas i.e. “!class %in% c(1, 5, 8)” pixels from the modeled AGB surfaces. Annual AGB surfaces were matched to the LMCAP layer from the same year.
NOTE: Masked AGB pixels are set to 0, and included in the agreement assessment just as any other AGB pixel.
Masked classes:
LCPRI | Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | pooled | 426 | NA | 7.15 | -7.15 | 26.03 | 7.15 | 0.00 | 0.15 | 0.00 | NA | NA |
2 | pooled | 1139 | NA | 9.62 | 18.63 | 29.45 | 24.74 | 0.29 | 0.81 | 0.24 | 0.58 | 0.65 |
3 | pooled | 94 | NA | 30.76 | 19.76 | 37.79 | 31.90 | 0.41 | 0.50 | 0.40 | 0.74 | 0.66 |
4 | pooled | 2374 | NA | 130.61 | 8.08 | 60.78 | 48.53 | 0.26 | 0.17 | 0.00 | 0.71 | 0.03 |
5 | pooled | 122 | NA | 9.50 | -9.50 | 28.54 | 9.50 | 0.00 | 0.15 | 0.00 | NA | NA |
6 | pooled | 254 | NA | 79.95 | -3.44 | 58.36 | 45.25 | 0.41 | 0.28 | 0.00 | 0.37 | 0.20 |
8 | pooled | 15 | NA | 7.17 | -7.17 | 18.32 | 7.17 | 0.00 | 0.27 | 0.00 | NA | NA |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 680 | NA | 76.71 | 10.28 | 50.18 | 36.82 | 0.60 | 0.21 | 0.54 | 0.95 | 0.59 |
target_2014 | 661 | NA | 79.69 | 8.90 | 52.38 | 37.94 | 0.61 | 0.23 | 0.53 | 0.95 | 0.58 |
target_2015 | 651 | NA | 75.06 | 10.57 | 50.46 | 36.68 | 0.62 | 0.26 | 0.57 | 0.95 | 0.62 |
target_2016 | 627 | NA | 80.54 | 6.56 | 49.17 | 36.30 | 0.64 | 0.22 | 0.55 | 0.95 | 0.60 |
target_2017 | 608 | NA | 81.51 | 7.02 | 51.79 | 37.68 | 0.65 | 0.24 | 0.55 | 0.93 | 0.62 |
target_2018 | 601 | NA | 77.51 | 9.53 | 49.76 | 36.08 | 0.62 | 0.24 | 0.57 | 0.96 | 0.61 |
target_2019 | 596 | NA | 80.83 | 5.41 | 47.26 | 34.96 | 0.68 | 0.26 | 0.60 | 0.94 | 0.65 |
pooled | 4424 | NA | 78.78 | 8.38 | 50.20 | 36.66 | 0.63 | 0.23 | 0.56 | 0.95 | 0.61 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 645 | 1.05 | 76.51 | 10.38 | 50.37 | 36.93 | 0.59 | 0.21 | 0.53 | 0.95 | 0.58 |
target_2014 | 617 | 1.07 | 78.24 | 9.51 | 50.89 | 37.14 | 0.61 | 0.23 | 0.54 | 0.95 | 0.59 |
target_2015 | 574 | 1.13 | 74.87 | 11.35 | 49.10 | 35.65 | 0.62 | 0.25 | 0.58 | 0.95 | 0.63 |
target_2016 | 564 | 1.11 | 79.54 | 6.92 | 48.45 | 35.74 | 0.63 | 0.21 | 0.56 | 0.95 | 0.60 |
target_2017 | 568 | 1.07 | 82.36 | 6.78 | 51.18 | 36.92 | 0.65 | 0.23 | 0.55 | 0.93 | 0.62 |
target_2018 | 551 | 1.09 | 77.10 | 9.95 | 48.89 | 35.58 | 0.63 | 0.25 | 0.58 | 0.96 | 0.63 |
target_2019 | 521 | 1.14 | 81.11 | 4.66 | 45.75 | 34.13 | 0.69 | 0.24 | 0.60 | 0.94 | 0.65 |
pooled | 1502 | 2.95 | 77.25 | 8.62 | 34.60 | 26.12 | 0.69 | 0.13 | 0.67 | 0.96 | 0.71 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 190 | 3.58 | 71.43 | 10.04 | 30.32 | 23.02 | 0.70 | 0.15 | 0.71 | 0.97 | 0.74 |
target_2014 | 184 | 3.59 | 75.98 | 10.14 | 30.30 | 23.74 | 0.75 | 0.13 | 0.74 | 0.96 | 0.78 |
target_2015 | 184 | 3.54 | 70.38 | 12.06 | 31.47 | 24.07 | 0.68 | 0.17 | 0.69 | 0.94 | 0.75 |
target_2016 | 180 | 3.48 | 79.06 | 5.11 | 34.24 | 24.68 | 0.68 | 0.12 | 0.61 | 0.95 | 0.66 |
target_2017 | 182 | 3.34 | 79.84 | 5.47 | 33.63 | 25.37 | 0.73 | 0.14 | 0.69 | 0.96 | 0.72 |
target_2018 | 186 | 3.23 | 76.60 | 8.52 | 34.26 | 25.35 | 0.66 | 0.12 | 0.63 | 0.95 | 0.67 |
target_2019 | 179 | 3.33 | 80.22 | 6.75 | 33.27 | 23.85 | 0.70 | 0.13 | 0.67 | 0.97 | 0.70 |
pooled | 205 | 21.58 | 72.36 | 9.82 | 20.12 | 14.69 | 0.83 | 0.14 | 0.83 | 0.96 | 0.87 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 80 | 8.50 | 67.69 | 8.71 | 22.02 | 15.83 | 0.79 | 0.12 | 0.80 | 0.97 | 0.83 |
target_2014 | 75 | 8.81 | 74.61 | 8.26 | 23.13 | 17.99 | 0.78 | 0.12 | 0.77 | 0.96 | 0.81 |
target_2015 | 77 | 8.45 | 69.17 | 9.75 | 25.68 | 18.49 | 0.66 | 0.16 | 0.68 | 0.95 | 0.72 |
target_2016 | 77 | 8.14 | 75.22 | 7.04 | 20.84 | 15.34 | 0.83 | 0.12 | 0.83 | 0.98 | 0.86 |
target_2017 | 74 | 8.22 | 78.20 | 6.85 | 20.09 | 15.29 | 0.84 | 0.11 | 0.84 | 0.98 | 0.86 |
target_2018 | 77 | 7.81 | 70.36 | 11.92 | 24.27 | 18.35 | 0.76 | 0.17 | 0.77 | 0.94 | 0.83 |
target_2019 | 76 | 7.84 | 77.96 | 6.74 | 26.41 | 18.68 | 0.73 | 0.13 | 0.71 | 0.97 | 0.74 |
pooled | 85 | 52.05 | 70.32 | 9.88 | 18.19 | 13.34 | 0.84 | 0.16 | 0.83 | 0.95 | 0.88 |
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2021, Oct. 4). CAFRI Labs: Landsat:LiDAR-AGB v0.0.7 Map Accuracy. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-v007-map-accuracy/
BibTeX citation
@misc{johnson2021landsat:lidar-agb, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat:LiDAR-AGB v0.0.7 Map Accuracy}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-v007-map-accuracy/}, year = {2021} }