Map accuracy/agreement assessment following the Riemann et. al. framework.
Map accuracy assessment for the v0.0.8 model-weighted-ensemble Landsat model trained on AOA-masked LiDAR-AGB surfaces. FIA data inventoried between 2013 and 2019 were considered for this assessment.
Branch used to produce this document: lj_landsat-lidar-0.0.8
LCMAP Collection 1.2 primary classification layers were used to mask out water, developed, and barren areas i.e. “!class %in% c(1, 5, 8)” pixels from the modeled AGB surfaces. Annual AGB surfaces were matched to the LMCAP layer from the same year.
NOTE: Masked AGB pixels are set to 0, and included in the agreement assessment just as any other AGB pixel.
Masked classes:
LCPRI | Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | pooled | 426 | NA | 7.15 | -7.15 | 26.03 | 7.15 | 0.00 | 0.15 | 0.00 | NA | NA |
2 | pooled | 1139 | NA | 9.62 | 22.27 | 32.03 | 27.62 | 0.29 | 0.81 | 0.27 | 0.57 | 0.70 |
3 | pooled | 94 | NA | 30.76 | 24.09 | 39.89 | 34.13 | 0.42 | 0.57 | 0.44 | 0.72 | 0.71 |
4 | pooled | 2374 | NA | 130.61 | 3.92 | 57.55 | 45.45 | 0.32 | 0.17 | 0.00 | 0.55 | 0.02 |
5 | pooled | 122 | NA | 9.50 | -9.50 | 28.54 | 9.50 | 0.00 | 0.15 | 0.00 | NA | NA |
6 | pooled | 254 | NA | 79.95 | 1.33 | 58.43 | 47.24 | 0.41 | 0.30 | 0.00 | 0.27 | 0.12 |
8 | pooled | 15 | NA | 7.17 | -7.17 | 18.32 | 7.17 | 0.00 | 0.27 | 0.00 | NA | NA |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 680 | NA | 76.71 | 10.57 | 48.11 | 35.98 | 0.63 | 0.22 | 0.57 | 0.94 | 0.64 |
target_2014 | 661 | NA | 79.69 | 8.42 | 50.39 | 36.90 | 0.63 | 0.23 | 0.54 | 0.92 | 0.62 |
target_2015 | 651 | NA | 75.06 | 9.99 | 47.74 | 35.56 | 0.66 | 0.26 | 0.60 | 0.93 | 0.67 |
target_2016 | 627 | NA | 80.54 | 6.05 | 47.52 | 35.28 | 0.66 | 0.22 | 0.56 | 0.93 | 0.63 |
target_2017 | 608 | NA | 81.51 | 4.96 | 51.77 | 37.86 | 0.65 | 0.25 | 0.50 | 0.89 | 0.61 |
target_2018 | 601 | NA | 77.51 | 7.93 | 47.66 | 35.18 | 0.65 | 0.25 | 0.57 | 0.93 | 0.64 |
target_2019 | 596 | NA | 80.83 | 3.60 | 46.61 | 34.55 | 0.70 | 0.26 | 0.56 | 0.90 | 0.66 |
pooled | 4424 | NA | 78.78 | 7.45 | 48.58 | 35.91 | 0.65 | 0.24 | 0.56 | 0.92 | 0.63 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 645 | 1.05 | 76.51 | 10.68 | 48.35 | 36.05 | 0.62 | 0.21 | 0.56 | 0.94 | 0.63 |
target_2014 | 617 | 1.07 | 78.24 | 9.00 | 48.72 | 35.96 | 0.64 | 0.23 | 0.56 | 0.93 | 0.63 |
target_2015 | 574 | 1.13 | 74.87 | 10.74 | 46.30 | 34.38 | 0.66 | 0.25 | 0.61 | 0.94 | 0.68 |
target_2016 | 564 | 1.11 | 79.54 | 6.39 | 46.82 | 34.61 | 0.66 | 0.22 | 0.56 | 0.93 | 0.63 |
target_2017 | 568 | 1.07 | 82.36 | 4.64 | 51.26 | 37.19 | 0.65 | 0.24 | 0.50 | 0.89 | 0.61 |
target_2018 | 551 | 1.09 | 77.10 | 8.28 | 46.90 | 34.75 | 0.65 | 0.25 | 0.58 | 0.94 | 0.65 |
target_2019 | 521 | 1.14 | 81.11 | 2.94 | 45.56 | 33.65 | 0.70 | 0.25 | 0.55 | 0.90 | 0.65 |
pooled | 1502 | 2.95 | 77.25 | 8.00 | 33.64 | 25.44 | 0.71 | 0.14 | 0.67 | 0.95 | 0.72 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 190 | 3.58 | 71.43 | 10.80 | 30.07 | 22.66 | 0.71 | 0.15 | 0.72 | 0.96 | 0.76 |
target_2014 | 184 | 3.59 | 75.98 | 10.17 | 30.67 | 23.75 | 0.74 | 0.15 | 0.72 | 0.95 | 0.77 |
target_2015 | 184 | 3.54 | 70.38 | 11.66 | 30.16 | 23.05 | 0.71 | 0.17 | 0.70 | 0.93 | 0.77 |
target_2016 | 180 | 3.48 | 79.06 | 4.67 | 33.23 | 24.16 | 0.71 | 0.12 | 0.62 | 0.93 | 0.69 |
target_2017 | 182 | 3.34 | 79.84 | 3.37 | 34.80 | 26.19 | 0.71 | 0.14 | 0.61 | 0.93 | 0.68 |
target_2018 | 186 | 3.23 | 76.60 | 7.61 | 34.83 | 25.79 | 0.64 | 0.15 | 0.58 | 0.93 | 0.64 |
target_2019 | 179 | 3.33 | 80.22 | 5.26 | 33.19 | 23.32 | 0.70 | 0.14 | 0.63 | 0.94 | 0.69 |
pooled | 205 | 21.58 | 72.36 | 9.52 | 21.21 | 14.89 | 0.80 | 0.13 | 0.80 | 0.95 | 0.85 |
Group | n | PPH | Mean FIA | MBE | RMSE | MAE | R2 | KS | AC | ACs | ACu |
---|---|---|---|---|---|---|---|---|---|---|---|
target_2013 | 80 | 8.50 | 67.69 | 9.70 | 23.18 | 15.71 | 0.78 | 0.15 | 0.79 | 0.96 | 0.82 |
target_2014 | 75 | 8.81 | 74.61 | 8.24 | 24.24 | 18.58 | 0.75 | 0.15 | 0.73 | 0.94 | 0.79 |
target_2015 | 77 | 8.45 | 69.17 | 9.79 | 25.00 | 17.54 | 0.67 | 0.17 | 0.69 | 0.95 | 0.74 |
target_2016 | 77 | 8.14 | 75.22 | 6.93 | 20.01 | 14.73 | 0.85 | 0.12 | 0.84 | 0.97 | 0.87 |
target_2017 | 74 | 8.22 | 78.20 | 5.08 | 20.53 | 16.15 | 0.83 | 0.11 | 0.81 | 0.97 | 0.84 |
target_2018 | 77 | 7.81 | 70.36 | 10.95 | 24.84 | 18.17 | 0.73 | 0.17 | 0.74 | 0.94 | 0.79 |
target_2019 | 76 | 7.84 | 77.96 | 6.18 | 28.28 | 19.92 | 0.68 | 0.12 | 0.64 | 0.95 | 0.68 |
pooled | 85 | 52.05 | 70.32 | 9.56 | 19.15 | 13.50 | 0.81 | 0.20 | 0.81 | 0.95 | 0.86 |
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Johnson (2022, April 6). CAFRI Labs: Landsat:LiDAR-AGB v0.0.8 Map Accuracy. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-v008-map-accuracy/
BibTeX citation
@misc{johnson2022landsat:lidar-agb, author = {Johnson, Lucas}, title = {CAFRI Labs: Landsat:LiDAR-AGB v0.0.8 Map Accuracy}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/landsatlidar-agb-v008-map-accuracy/}, year = {2022} }