Summary of intial tuning results for the Landtrendr algorithm, plus bonus results from tunings using the multiple disturbance accuracy assesment protocol.
file name | short name | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|
lt_nbr_greatest_tuning_recoverythreshold_75 | recovery threshold 0.75 | 0.6402 | 0.2964 | 0.4052 | 0.7796 |
lt_nbr_greatest_tuning_defaults | defaults | 0.6671 | 0.2214 | 0.3325 | 0.7738 |
rasters/lt_gee_nbr_greatest_tuning_maxsegments_8 | max segmetns 08 | 0.6716 | 0.2193 | 0.3306 | 0.7740 |
rasters/lt_gee_nbr_greatest_tuning_maxsegments_12 | max segments 12 | 0.6686 | 0.2243 | 0.3359 | 0.7743 |
lt_gee_nbr_greatest_tuning_vertexovershoot_1 | vertex overshoot 1 | 0.6724 | 0.2213 | 0.3330 | 0.7744 |
lt_gee_nbr_greatest_tuning_vertexovershoot_5 | vertex overshoot 5 | 0.6689 | 0.2229 | 0.3344 | 0.7742 |
lt_gee_nbr_greatest_tuning_recoverythreshold_05 | recovery threshold 0.5 | 0.6818 | 0.2884 | 0.4054 | 0.7853 |
lt_gee_nbr_greatest_tuning_pval_1 | pval 0.1 | 0.6688 | 0.2236 | 0.3352 | 0.7743 |
lt_gee_nbr_greatest_tuning_pval_2 | pval 0.2 | 0.6720 | 0.2259 | 0.3381 | 0.7751 |
lt_gee_nbr_greatest_tuning_modelproportion_1 | modelproportion 1 | 0.6692 | 0.2203 | 0.3315 | 0.7739 |
lt_gee_nbr_greatest_tuning_modelproportion_5 | model proportion 0.5 | 0.6692 | 0.2203 | 0.3315 | 0.7739 |
lt_gee_nbr_greatest_tuning_maxsegments_16 | max segments 16 | 0.6687 | 0.2250 | 0.3367 | 0.7744 |
lt_gee_nbr_greatest_tuning_maxsegments_14 | max segments 14 | 0.6671 | 0.2237 | 0.3351 | 0.7741 |
lt_gee_nbr_greatest_tuning_recoverythreshold_08 | recovery threshold 0.8 | 0.6290 | 0.2977 | 0.4041 | 0.7778 |
lt_gee_nbr_greatest_tuning_recoverythreshold_09 | recovery threshold 0.9 | 0.6135 | 0.2992 | 0.4022 | 0.7752 |
lt_gee_nbr_greatest_tuning_recoverythreshold_1 | recoverythreshold 1 | 0.6026 | 0.3001 | 0.4006 | 0.7732 |
lt_gee_nbr_greatest_tuning_combo_1 | combo 01 | 0.6216 | 0.3016 | 0.4062 | 0.7772 |
lt_gee_nbr_greatest_tuning_combo_2 | combo 02 | 0.6078 | 0.3067 | 0.4077 | 0.7752 |
lt_gee_nbr_greatest_tuning_combo_3 | combo 03 | 0.6102 | 0.3074 | 0.4088 | 0.7757 |
lt_gee_nbr_greatest_tuning_combo_4 | combo 04 | 0.6267 | 0.3037 | 0.4092 | 0.7783 |
lt_gee_nbr_greatest_tuning_combo_5 | combo 05 | 0.6636 | 0.2979 | 0.4112 | 0.7840 |
lt_gee_nbr_greatest_tuning_combo_6 | combo 06 | 0.6751 | 0.2954 | 0.4110 | 0.7853 |
lt_gee_nbr_greatest_tuning_combo_7 | combo 07 | 0.6101 | 0.3088 | 0.4100 | 0.7757 |
lt_gee_nbr_greatest_tuning_combo_8 | combo 08 | 0.6260 | 0.3051 | 0.4102 | 0.7783 |
lt_gee_nbr_greatest_tuning_combo_10 | combo 10 | 0.6106 | 0.3067 | 0.4083 | 0.7756 |
lt_gee_nbr_greatest_tuning_combo_9 | combo 09 | 0.6680 | 0.2964 | 0.4106 | 0.7845 |
lt_gee_nbr_greatest_tuning_combo_11 | combo 11 | 0.6676 | 0.2945 | 0.4087 | 0.7841 |
lt_gee_nbr_greatest_tuning_combo_12 | combo 12 | 0.6602 | 0.2995 | 0.4121 | 0.7836 |
lt_gee_nbr_greatest_tuning_combo12_dur_1 | duration 1 | NA | 0.0000 | NA | 0.7419 |
lt_gee_nbr_greatest_tuning_combo12_dur_2 | duration 2 | 0.6416 | 0.2428 | 0.3523 | 0.7740 |
lt_gee_nbr_greatest_tuning_combo12_mmu_10 | mmu 10 | 0.6765 | 0.2877 | 0.4037 | 0.7844 |
lt_gee_nbr_greatest_tuning_combo12_mmu_15 | mmu 15 | 0.6900 | 0.2743 | 0.3925 | 0.7842 |
Short Name | Max Segments | Vertex Count Overshoot | Recovery Threshold | P Value Threshold | Best Model Proportion |
---|---|---|---|---|---|
combo 01 | 12 | 1 | 0.75 | 0.10 | 0.75 |
combo 02 | 16 | 1 | 0.75 | 0.10 | 0.75 |
combo 03 | 16 | 5 | 0.75 | 0.10 | 0.75 |
combo 04 | 12 | 5 | 0.75 | 0.10 | 0.75 |
combo 05 | 16 | 5 | 0.50 | 0.10 | 0.75 |
combo 06 | 12 | 5 | 0.50 | 0.10 | 0.75 |
combo 07 | 16 | 5 | 0.75 | 0.20 | 0.75 |
combo 08 | 12 | 5 | 0.75 | 0.20 | 0.75 |
combo 10 | 16 | 1 | 0.75 | 0.05 | 0.75 |
combo 09 | 16 | 5 | 0.50 | 0.05 | 0.75 |
combo 11 | 12 | 1 | 0.50 | 0.10 | 0.75 |
combo 12 | 16 | 1 | 0.50 | 0.10 | 0.75 |
Figure 1: Results of intial tuning with single disturbance detection. Values for accuracy metrics are shown relative to the results from the default parameter set.
Tunings selected for evaluation with the multiple disturbance detection protocol were
- Combo 12: highest F1 score
- Combo 5: 2nd highest F1 and accuracy
- Combo 6: highest accuracy
- Combo 7: highest recall (excluding map generation parameters that can’t be used with MDDP)
- Recovery Threshold 0.75: highest precision, also the combination of parameters used in the JOF paper
- Recovery Threshold
Figure 2: Results of selected high performance tunings applied with the multiple disturbance detection protocol. Results are reported relative to the default parameter results.
Figure 3: Comparison of tuning results between the single detection outputs and the multiple disturbance detection protocol. Positive values indicate an increase in the metric value from evaluation of single disturbances to evaluation of multiple disturbances, whereas a negative value indicates a decrease in the metric.
short_name | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|
multi disturbance combo 12 | 0.4069283 | 0.4872448 | 0.4434795 | 0.9224310 |
multi disturbance combo 5 | 0.4185054 | 0.4799470 | 0.4471253 | 0.9247123 |
multi disturbance combo 6 | 0.4372268 | 0.4557587 | 0.4463005 | 0.9282677 |
multi disturbance combo 7 | 0.4152033 | 0.4884253 | 0.4488477 | 0.9239141 |
multi disturbance recovery threshold 0.75 | 0.4443259 | 0.4345781 | 0.4393979 | 0.9296608 |
multi disturbance defaults | 0.5219555 | 0.3032785 | 0.3836437 | 0.9381872 |
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Desrochers (2023, Feb. 13). CAFRI Labs: LT Tuning: Round 1 & 1.5. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/lt-tuning-round-1-15/
BibTeX citation
@misc{desrochers2023lt, author = {Desrochers, Madeleine}, title = {CAFRI Labs: LT Tuning: Round 1 & 1.5}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/lt-tuning-round-1-15/}, year = {2023} }