The first iteration of shrubland model reporting. 2022-01-12
This is the first iteration of shrubland modeling using LANDSAT-derived predictors. Shrubland pixels are 30m pixels which are (at a 1m scale) >= 50% between 1m and 5m heights (in a LiDAR-derived CHM), within vegetated LCPRI classes.
Threshold values were chosen using the validation set (below) to optimize for a certain level of specificity.
Probability Threshold | Specificity | Sensitivity | |
---|---|---|---|
Optimize Both | |||
Linear Ensemble | 0.416 | 0.742 | 0.863 |
LGB | 0.484 | 0.755 | 0.842 |
RF | 0.508 | 0.721 | 0.783 |
95% Specificity | |||
Linear Ensemble | 0.848 | 0.962 | 0.424 |
LGB | 0.832 | 0.961 | 0.434 |
RF | 0.639 | 0.956 | 0.324 |
97.5% Specificity | |||
Linear Ensemble | 0.882 | 0.984 | 0.263 |
LGB | 0.882 | 0.984 | 0.298 |
RF | 0.667 | 0.980 | 0.214 |
99% Specificity | |||
Linear Ensemble | 0.902 | 0.993 | 0.136 |
LGB | 0.922 | 0.992 | 0.173 |
RF | 0.689 | 0.991 | 0.114 |
Logistic Ensemble
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1240 227
1 432 1435
Accuracy : 0.8023
95% CI : (0.7884, 0.8157)
No Information Rate : 0.5015
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.6048
Mcnemar's Test P-Value : 1.915e-15
Sensitivity : 0.8634
Specificity : 0.7416
Pos Pred Value : 0.7686
Neg Pred Value : 0.8453
Prevalence : 0.4985
Detection Rate : 0.4304
Detection Prevalence : 0.5600
Balanced Accuracy : 0.8025
'Positive' Class : 1
LightGBM
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1262 262
1 410 1400
Accuracy : 0.7984
95% CI : (0.7844, 0.8119)
No Information Rate : 0.5015
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.597
Mcnemar's Test P-Value : 0.00000001423
Sensitivity : 0.8424
Specificity : 0.7548
Pos Pred Value : 0.7735
Neg Pred Value : 0.8281
Prevalence : 0.4985
Detection Rate : 0.4199
Detection Prevalence : 0.5429
Balanced Accuracy : 0.7986
'Positive' Class : 1
Random Forest
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1206 360
1 466 1302
Accuracy : 0.7522
95% CI : (0.7372, 0.7668)
No Information Rate : 0.5015
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.5046
Mcnemar's Test P-Value : 0.0002588
Sensitivity : 0.7834
Specificity : 0.7213
Pos Pred Value : 0.7364
Neg Pred Value : 0.7701
Prevalence : 0.4985
Detection Rate : 0.3905
Detection Prevalence : 0.5303
Balanced Accuracy : 0.7523
'Positive' Class : 1
Logistic Ensemble
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1609 957
1 63 705
Accuracy : 0.6941
95% CI : (0.6781, 0.7097)
No Information Rate : 0.5015
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.3871
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.4242
Specificity : 0.9623
Pos Pred Value : 0.9180
Neg Pred Value : 0.6270
Prevalence : 0.4985
Detection Rate : 0.2115
Detection Prevalence : 0.2304
Balanced Accuracy : 0.6933
'Positive' Class : 1
LightGBM
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1607 940
1 65 722
Accuracy : 0.6986
95% CI : (0.6827, 0.7141)
No Information Rate : 0.5015
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.3962
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.4344
Specificity : 0.9611
Pos Pred Value : 0.9174
Neg Pred Value : 0.6309
Prevalence : 0.4985
Detection Rate : 0.2166
Detection Prevalence : 0.2361
Balanced Accuracy : 0.6978
'Positive' Class : 1
Random Forest
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1598 1123
1 74 539
Accuracy : 0.641
95% CI : (0.6244, 0.6573)
No Information Rate : 0.5015
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.2806
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.3243
Specificity : 0.9557
Pos Pred Value : 0.8793
Neg Pred Value : 0.5873
Prevalence : 0.4985
Detection Rate : 0.1617
Detection Prevalence : 0.1839
Balanced Accuracy : 0.6400
'Positive' Class : 1
Logistic Ensemble
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1645 1225
1 27 437
Accuracy : 0.6245
95% CI : (0.6078, 0.6409)
No Information Rate : 0.5015
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.2473
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.2629
Specificity : 0.9839
Pos Pred Value : 0.9418
Neg Pred Value : 0.5732
Prevalence : 0.4985
Detection Rate : 0.1311
Detection Prevalence : 0.1392
Balanced Accuracy : 0.6234
'Positive' Class : 1
LightGBM
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1645 1166
1 27 496
Accuracy : 0.6422
95% CI : (0.6256, 0.6585)
No Information Rate : 0.5015
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.2829
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.2984
Specificity : 0.9839
Pos Pred Value : 0.9484
Neg Pred Value : 0.5852
Prevalence : 0.4985
Detection Rate : 0.1488
Detection Prevalence : 0.1569
Balanced Accuracy : 0.6411
'Positive' Class : 1
Random Forest
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1638 1307
1 34 355
Accuracy : 0.5978
95% CI : (0.5809, 0.6145)
No Information Rate : 0.5015
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.1937
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.2136
Specificity : 0.9797
Pos Pred Value : 0.9126
Neg Pred Value : 0.5562
Prevalence : 0.4985
Detection Rate : 0.1065
Detection Prevalence : 0.1167
Balanced Accuracy : 0.5966
'Positive' Class : 1
Logistic Ensemble
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1661 1436
1 11 226
Accuracy : 0.566
95% CI : (0.549, 0.5829)
No Information Rate : 0.5015
P-Value [Acc > NIR] : 0.00000000000005002
Kappa : 0.1297
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.13598
Specificity : 0.99342
Pos Pred Value : 0.95359
Neg Pred Value : 0.53633
Prevalence : 0.49850
Detection Rate : 0.06779
Detection Prevalence : 0.07109
Balanced Accuracy : 0.56470
'Positive' Class : 1
LightGBM
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1658 1374
1 14 288
Accuracy : 0.5837
95% CI : (0.5667, 0.6005)
No Information Rate : 0.5015
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.1653
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.17329
Specificity : 0.99163
Pos Pred Value : 0.95364
Neg Pred Value : 0.54683
Prevalence : 0.49850
Detection Rate : 0.08638
Detection Prevalence : 0.09058
Balanced Accuracy : 0.58246
'Positive' Class : 1
Random Forest
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1657 1473
1 15 189
Accuracy : 0.5537
95% CI : (0.5366, 0.5707)
No Information Rate : 0.5015
P-Value [Acc > NIR] : 0.0000000008964
Kappa : 0.105
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.11372
Specificity : 0.99103
Pos Pred Value : 0.92647
Neg Pred Value : 0.52939
Prevalence : 0.49850
Detection Rate : 0.05669
Detection Prevalence : 0.06119
Balanced Accuracy : 0.55237
'Positive' Class : 1
Probability Threshold | Specificity | Sensitivity | |
---|---|---|---|
Optimize Both | |||
Linear Ensemble | 0.416 | 0.725 | 0.858 |
LGB | 0.484 | 0.746 | 0.836 |
RF | 0.508 | 0.701 | 0.773 |
95% Specificity | |||
Linear Ensemble | 0.848 | 0.950 | 0.407 |
LGB | 0.832 | 0.950 | 0.417 |
RF | 0.639 | 0.950 | 0.323 |
97.5% Specificity | |||
Linear Ensemble | 0.882 | 0.975 | 0.263 |
LGB | 0.882 | 0.975 | 0.301 |
RF | 0.667 | 0.975 | 0.208 |
99% Specificity | |||
Linear Ensemble | 0.902 | 0.990 | 0.151 |
LGB | 0.922 | 0.990 | 0.186 |
RF | 0.689 | 0.990 | 0.109 |
Logistic Ensemble
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1210 236
1 458 1429
Accuracy : 0.7918
95% CI : (0.7776, 0.8055)
No Information Rate : 0.5005
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.5836
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.8583
Specificity : 0.7254
Pos Pred Value : 0.7573
Neg Pred Value : 0.8368
Prevalence : 0.4995
Detection Rate : 0.4287
Detection Prevalence : 0.5662
Balanced Accuracy : 0.7918
'Positive' Class : 1
LightGBM
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1244 273
1 424 1392
Accuracy : 0.7909
95% CI : (0.7767, 0.8046)
No Information Rate : 0.5005
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.5818
Mcnemar's Test P-Value : 0.00000001334
Sensitivity : 0.8360
Specificity : 0.7458
Pos Pred Value : 0.7665
Neg Pred Value : 0.8200
Prevalence : 0.4995
Detection Rate : 0.4176
Detection Prevalence : 0.5449
Balanced Accuracy : 0.7909
'Positive' Class : 1
Random Forest
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1169 378
1 499 1287
Accuracy : 0.7369
95% CI : (0.7216, 0.7518)
No Information Rate : 0.5005
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.4738
Mcnemar's Test P-Value : 0.00005076
Sensitivity : 0.7730
Specificity : 0.7008
Pos Pred Value : 0.7206
Neg Pred Value : 0.7557
Prevalence : 0.4995
Detection Rate : 0.3861
Detection Prevalence : 0.5359
Balanced Accuracy : 0.7369
'Positive' Class : 1
Logistic Ensemble
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1585 988
1 83 677
Accuracy : 0.6787
95% CI : (0.6625, 0.6945)
No Information Rate : 0.5005
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.357
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.4066
Specificity : 0.9502
Pos Pred Value : 0.8908
Neg Pred Value : 0.6160
Prevalence : 0.4995
Detection Rate : 0.2031
Detection Prevalence : 0.2280
Balanced Accuracy : 0.6784
'Positive' Class : 1
LightGBM
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1585 971
1 83 694
Accuracy : 0.6838
95% CI : (0.6677, 0.6995)
No Information Rate : 0.5005
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.3672
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.4168
Specificity : 0.9502
Pos Pred Value : 0.8932
Neg Pred Value : 0.6201
Prevalence : 0.4995
Detection Rate : 0.2082
Detection Prevalence : 0.2331
Balanced Accuracy : 0.6835
'Positive' Class : 1
Random Forest
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1585 1128
1 83 537
Accuracy : 0.6367
95% CI : (0.6201, 0.653)
No Information Rate : 0.5005
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.2729
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.3225
Specificity : 0.9502
Pos Pred Value : 0.8661
Neg Pred Value : 0.5842
Prevalence : 0.4995
Detection Rate : 0.1611
Detection Prevalence : 0.1860
Balanced Accuracy : 0.6364
'Positive' Class : 1
Logistic Ensemble
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1627 1227
1 41 438
Accuracy : 0.6196
95% CI : (0.6028, 0.6361)
No Information Rate : 0.5005
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.2386
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.2631
Specificity : 0.9754
Pos Pred Value : 0.9144
Neg Pred Value : 0.5701
Prevalence : 0.4995
Detection Rate : 0.1314
Detection Prevalence : 0.1437
Balanced Accuracy : 0.6192
'Positive' Class : 1
LightGBM
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1627 1164
1 41 501
Accuracy : 0.6385
95% CI : (0.6219, 0.6548)
No Information Rate : 0.5005
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.2765
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.3009
Specificity : 0.9754
Pos Pred Value : 0.9244
Neg Pred Value : 0.5829
Prevalence : 0.4995
Detection Rate : 0.1503
Detection Prevalence : 0.1626
Balanced Accuracy : 0.6382
'Positive' Class : 1
Random Forest
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1627 1319
1 41 346
Accuracy : 0.592
95% CI : (0.575, 0.6087)
No Information Rate : 0.5005
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.1834
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.2078
Specificity : 0.9754
Pos Pred Value : 0.8941
Neg Pred Value : 0.5523
Prevalence : 0.4995
Detection Rate : 0.1038
Detection Prevalence : 0.1161
Balanced Accuracy : 0.5916
'Positive' Class : 1
Logistic Ensemble
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1652 1413
1 16 252
Accuracy : 0.5713
95% CI : (0.5542, 0.5881)
No Information Rate : 0.5005
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.1419
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.15135
Specificity : 0.99041
Pos Pred Value : 0.94030
Neg Pred Value : 0.53899
Prevalence : 0.49955
Detection Rate : 0.07561
Detection Prevalence : 0.08041
Balanced Accuracy : 0.57088
'Positive' Class : 1
LightGBM
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1652 1355
1 16 310
Accuracy : 0.5887
95% CI : (0.5717, 0.6054)
No Information Rate : 0.5005
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.1767
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.18619
Specificity : 0.99041
Pos Pred Value : 0.95092
Neg Pred Value : 0.54938
Prevalence : 0.49955
Detection Rate : 0.09301
Detection Prevalence : 0.09781
Balanced Accuracy : 0.58830
'Positive' Class : 1
Random Forest
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 1652 1483
1 16 182
Accuracy : 0.5503
95% CI : (0.5332, 0.5672)
No Information Rate : 0.5005
P-Value [Acc > NIR] : 0.000000004786
Kappa : 0.0998
Mcnemar's Test P-Value : < 2.2e-16
Sensitivity : 0.10931
Specificity : 0.99041
Pos Pred Value : 0.91919
Neg Pred Value : 0.52695
Prevalence : 0.49955
Detection Rate : 0.05461
Detection Prevalence : 0.05941
Balanced Accuracy : 0.54986
'Positive' Class : 1
Call: glm(formula = shrub ~ ., family = "binomial", data = validation)
Coefficients:
(Intercept) tcb tcw tcg nbr
-5.15613260 0.00038152 0.00027974 -0.00012225 0.00003898
mag yod nys_precip nys_tmax nys_tmin
-0.00079959 0.00001847 0.00048267 0.09909979 -0.10876755
nys_aspect nys_dem nys_slope nys_twi lcsec_X2
-0.00023984 -0.00019729 -0.00830177 -0.07000833 -0.04556227
lcsec_X3 lcsec_X4 lcsec_X5 lcsec_X8 lcsec_X6
0.24248714 0.22365026 0.28850568 0.45080926 12.90850836
lgb rf
5.40048011 0.89261878
Degrees of Freedom: 3332 Total (i.e. Null); 3311 Residual
Null Deviance: 4621
Residual Deviance: 2986 AIC: 3030
$num.trees
[1] 3000
$mtry
[1] 1
$min.node.size
[1] 6
$replace
[1] TRUE
$sample.fraction
[1] 0.2
$formula
shrub ~ .
$params
$params$learning_rate
[1] 0.01
$params$nrounds
[1] 2500
$params$num_leaves
[1] 14
$params$max_depth
[1] -1
$params$extra_trees
[1] FALSE
$params$min_data_in_leaf
[1] 10
$params$bagging_fraction
[1] 0.5
$params$bagging_freq
[1] 1
$params$feature_fraction
[1] 0.9
$params$min_data_in_bin
[1] 3
$params$lambda_l1
[1] 0
$params$lambda_l2
[1] 0.5
$params$force_col_wise
[1] TRUE
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Mahoney (2022, Jan. 12). CAFRI Labs: Shrubland 0.0.1: Making It Happen. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/shrubland-001-making-it-happen/
BibTeX citation
@misc{mahoney2022shrubland, author = {Mahoney, Mike}, title = {CAFRI Labs: Shrubland 0.0.1: Making It Happen}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/shrubland-001-making-it-happen/}, year = {2022} }