Universal Bias Corrections

Holdout set accuracy for Universal Bias Corrections, 2021-04-26

Mike Mahoney true
2020-04-26

Evaluation Results

Last iteration of these models: 2021-02-02

Change Summary

RF (ranger) GBM (LightGBM) SVM (kernlab) Ensemble (model weighted) Ensemble (RMSE weighted)
RMSE 35.515 35.480 36.671 35.463 35.043
MBE 3.165 3.789 3.552 3.186 3.283
R2 0.791 0.792 0.780 0.791 0.797

AGB Distribution

summary(bind_rows(training, testing)$agb_mgha)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  0.000   7.096  86.038  91.674 149.404 425.363 

Validation Results

RMSE Min Median Max
Rf 34.918 40.585 46.213
Lgb 34.102 40.424 46.415
Svm 36.847 41.906 47.528
Ensemble 34.886 40.586 46.312
R2 Min Median Max
rf 0.689 0.744 0.794
lgb 0.682 0.744 0.792
svm 0.637 0.727 0.780
ensemble 0.689 0.743 0.796

Metadata

Ensembles

      lgb        rf       svm 
0.3386723 0.3351334 0.3261943 

Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = pred_values)

Residuals:
    Min      1Q  Median      3Q     Max 
-135.84  -21.00   -0.54   15.65  220.05 

Coefficients:
                            Estimate Std. Error t value Pr(>|t|)    
(Intercept)               -2.030e+00  5.557e-01  -3.654 0.000259 ***
rf_pred                    2.987e-01  8.609e-02   3.470 0.000521 ***
lgb_pred                   7.340e-01  7.983e-02   9.195  < 2e-16 ***
svm_pred                   1.968e-01  4.337e-02   4.537 5.73e-06 ***
rf_pred:lgb_pred          -1.261e-03  3.022e-04  -4.174 3.00e-05 ***
rf_pred:svm_pred           2.327e-03  5.495e-04   4.234 2.30e-05 ***
lgb_pred:svm_pred         -3.083e-03  4.915e-04  -6.272 3.63e-10 ***
rf_pred:lgb_pred:svm_pred  3.270e-06  1.085e-06   3.015 0.002572 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 39.79 on 22992 degrees of freedom
Multiple R-squared:  0.7478,    Adjusted R-squared:  0.7478 
F-statistic:  9741 on 7 and 22992 DF,  p-value: < 2.2e-16

Coverages

\(n\) and \(p\)

Component Models

Random forest:

$num.trees
[1] 1000

$mtry
[1] 18

$min.node.size
[1] 7

$sample.fraction
[1] 0.2

$splitrule
[1] "variance"

$replace
[1] TRUE

$formula
agb_mgha ~ .

LGB:

$learning_rate
[1] 0.05

$nrounds
[1] 100

$num_leaves
[1] 5

$max_depth
[1] 2

$extra_trees
[1] TRUE

$min_data_in_leaf
[1] 10

$bagging_fraction
[1] 0.3

$bagging_freq
[1] 1

$feature_fraction
[1] 0.4

$min_data_in_bin
[1] 8

$lambda_l1
[1] 5

$lambda_l2
[1] 1

$force_col_wise
[1] TRUE

SVM:

$x
agb_mgha ~ .

$kernel
[1] "laplacedot"

$type
[1] "eps-svr"

$kpar
$kpar$sigma
[1] 0.0078125


$C
[1] 12

$epsilon
[1] 1.525879e-05

Bias correction models:

Random forest:

[1] ""

LGB:

[1] ""

SVM:

[1] ""

Linear model:

[1] ""

RMSE-weighted:

[1] ""

Corrections

If you see mistakes or want to suggest changes, please create an issue on the source repository.

Citation

For attribution, please cite this work as

Mahoney (2021, April 26). CAFRI Labs: Universal Bias Corrections. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/universal-bias-corrections/

BibTeX citation

@misc{mahoney2021universal,
  author = {Mahoney, Mike},
  title = {CAFRI Labs: Universal Bias Corrections},
  url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/universal-bias-corrections/},
  year = {2021}
}