Holdout set accuracy for Universal Bias Corrections, 2021-04-26
Last iteration of these models: 2021-02-02
RF (ranger) | GBM (LightGBM) | SVM (kernlab) | Ensemble (model weighted) | Ensemble (RMSE weighted) | |
---|---|---|---|---|---|
RMSE | 35.515 | 35.480 | 36.671 | 35.463 | 35.043 |
MBE | 3.165 | 3.789 | 3.552 | 3.186 | 3.283 |
R2 | 0.791 | 0.792 | 0.780 | 0.791 | 0.797 |
summary(bind_rows(training, testing)$agb_mgha)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 7.096 86.038 91.674 149.404 425.363
RMSE | Min | Median | Max |
---|---|---|---|
Rf | 34.918 | 40.585 | 46.213 |
Lgb | 34.102 | 40.424 | 46.415 |
Svm | 36.847 | 41.906 | 47.528 |
Ensemble | 34.886 | 40.586 | 46.312 |
R2 | Min | Median | Max |
---|---|---|---|
rf | 0.689 | 0.744 | 0.794 |
lgb | 0.682 | 0.744 | 0.792 |
svm | 0.637 | 0.727 | 0.780 |
ensemble | 0.689 | 0.743 | 0.796 |
lgb rf svm
0.3386723 0.3351334 0.3261943
Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = pred_values)
Residuals:
Min 1Q Median 3Q Max
-135.84 -21.00 -0.54 15.65 220.05
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.030e+00 5.557e-01 -3.654 0.000259 ***
rf_pred 2.987e-01 8.609e-02 3.470 0.000521 ***
lgb_pred 7.340e-01 7.983e-02 9.195 < 2e-16 ***
svm_pred 1.968e-01 4.337e-02 4.537 5.73e-06 ***
rf_pred:lgb_pred -1.261e-03 3.022e-04 -4.174 3.00e-05 ***
rf_pred:svm_pred 2.327e-03 5.495e-04 4.234 2.30e-05 ***
lgb_pred:svm_pred -3.083e-03 4.915e-04 -6.272 3.63e-10 ***
rf_pred:lgb_pred:svm_pred 3.270e-06 1.085e-06 3.015 0.002572 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 39.79 on 22992 degrees of freedom
Multiple R-squared: 0.7478, Adjusted R-squared: 0.7478
F-statistic: 9741 on 7 and 22992 DF, p-value: < 2.2e-16
Random forest:
$num.trees
[1] 1000
$mtry
[1] 18
$min.node.size
[1] 7
$sample.fraction
[1] 0.2
$splitrule
[1] "variance"
$replace
[1] TRUE
$formula
agb_mgha ~ .
LGB:
$learning_rate
[1] 0.05
$nrounds
[1] 100
$num_leaves
[1] 5
$max_depth
[1] 2
$extra_trees
[1] TRUE
$min_data_in_leaf
[1] 10
$bagging_fraction
[1] 0.3
$bagging_freq
[1] 1
$feature_fraction
[1] 0.4
$min_data_in_bin
[1] 8
$lambda_l1
[1] 5
$lambda_l2
[1] 1
$force_col_wise
[1] TRUE
SVM:
$x
agb_mgha ~ .
$kernel
[1] "laplacedot"
$type
[1] "eps-svr"
$kpar
$kpar$sigma
[1] 0.0078125
$C
[1] 12
$epsilon
[1] 1.525879e-05
Random forest:
[1] ""
LGB:
[1] ""
SVM:
[1] ""
Linear model:
[1] ""
RMSE-weighted:
[1] ""
If you see mistakes or want to suggest changes, please create an issue on the source repository.
For attribution, please cite this work as
Mahoney (2021, April 26). CAFRI Labs: Universal Bias Corrections. Retrieved from https://cafri-labs.github.io/acceptable-growing-stock/posts/universal-bias-corrections/
BibTeX citation
@misc{mahoney2021universal, author = {Mahoney, Mike}, title = {CAFRI Labs: Universal Bias Corrections}, url = {https://cafri-labs.github.io/acceptable-growing-stock/posts/universal-bias-corrections/}, year = {2021} }