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Abstract. In ecology, the true causal structure for a given problem is often not known, and several
plausible models and thus model predictions exist. It has been claimed that using weighted averages of
these models can reduce prediction error, as well as better reflect model selection uncertainty. These claims,
however, are often demonstrated by isolated examples. Analysts must better understand under which con-
ditions model averaging can improve predictions and their uncertainty estimates. Moreover, a large range
of different model averaging methods exists, raising the question of how they differ in their behaviour and
performance. Here, we review the mathematical foundations of model averaging along with the diversity of
approaches available. We explain that the error in model-averaged predictions depends on each model’s
predictive bias and variance, as well as the covariance in predictions between models, and uncertainty
about model weights. We show that model averaging is particularly useful if the predictive error of con-
tributing model predictions is dominated by variance, and if the covariance between models is low. For
noisy data, which predominate in ecology, these conditions will often be met. Many different methods to
derive averaging weights exist, from Bayesian over information-theoretical to cross-validation optimized
and resampling approaches. A general recommendation is difficult, because the performance of methods is
often context dependent. Importantly, estimating weights creates some additional uncertainty. As a result,
estimated model weights may not always outperform arbitrary fixed weights, such as equal weights for all
models. When averaging a set of models with many inadequate models, however, estimating model weights
will typically be superior to equal weights. We also investigate the quality of the confidence intervals calcu-
lated for model-averaged predictions, showing that they differ greatly in behaviour and seldom manage to
achieve nominal coverage. Our overall recommendations stress the importance of non-parametric methods
such as cross-validation for a reliable uncertainty quantification of model-averaged predictions.

Key words: AIC weights; ensemble; model averaging; model combination; nominal coverage; prediction
averaging; uncertainty.

INTRODUCTION

Models are an integral part of ecological research, represent-
ing alternative, possibly overlapping, hypotheses (Chamberlin

1890). They are also the standard approach to making predic-
tions about ecological systems (Mouquet et al. 2015). In many
cases, it is not possible to clearly identify a single most-appro-
priate model. For instance, process-based models may differ in
the specific ways they represent ecological mechanisms, with-
out a clear empirical or theoretical reason to prefer one option
over the other. Statistical analyses rarely offer a single solution,
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both because the limited amount of data allows for several
plausible combinations of predictors, and because different
modelling approaches are available for statistical analysis (e.g.,
Hastie et al. 2009, Kuhn and Johnson 2013).
Model averaging seemingly solves this dilemma. Propo-

nents of this approach have claimed that calculating a
weighted average of the predictions of all candidate models
will reduce prediction error through reduced variance and
bias (the latter based on arguments described in Madigan
and Raftery 1994), as well as better represent uncertainty
about model parametrisation and structure (Wintle et al.
2003, see also Model averaging (typically) reduces prediction
errors). For some ecological examples of model averaging,
see Thuiller (2004), Richards (2005), Brook and Bradshaw
(2006), Dormann et al. (2008), Diniz-Filho et al. (2009), Le
Lay et al. (2010), Garcia et al. (2012), Cariveau et al.
(2013), Meller et al. (2014), and Lauzeral et al. (2015).
Evaluating the utility of this approach is complicated by

the large number of different methods for model averaging
and the subsequent uncertainty quantification of averaged
predictions. Several previous reviews on model averaging in
ecology and evolution focused exclusively on “information-
theoretical model averaging” (Johnson and Omland 2004,
Hobbs and Hilborn 2006, Burnham et al. 2011, Freckleton
2011, Grueber et al. 2011, Nakagawa and Freckleton 2011,
Richards et al. 2011, Symonds and Moussalli 2011), probably
under the influence of the AIC-weighted (Akaike information
criterion) averaging popularized by Burnham and Anderson
(2002, Posada and Buckley 2004). Bayesian model averaging
has been used less frequently in ecology (for an example see
Corani and Mignatti 2015), but, for an excellent recent review
of this topic in the context of Bayesian model selection, see
Hooten and Hobbs (2015, see also Hoeting et al. 1999, Elli-
son 2004, Link and Barker 2006). However, none of the above
covers all available model averaging approaches, together
with a general discussion of advantages and disadvantages.
Our aim is to provide such a comprehensive review in the

light of developments over the last 20 years, summarizing
the mathematical reasoning behind model averaging, and
offering an intuitive but technically sound entry to the field,
illustrated by case studies. We primarily address prediction
averaging of correlative models, although most of the points
will similarly apply to mechanistic/process-based models
(see, e.g., Diks and Vrugt 2010, Knutti et al. 2010 for
reviews in the context of climate and hydrological models,
respectively). We do not consider averaging model parame-
ters, because we agree with the criticism summarized in Ban-
ner and Higgs (2017): parameters (such as partial regression
coefficients) are estimated conditional on the model struc-
ture; as the model structure changes, parameters may
become incommensurable (see Posada and Buckley 2004,
Cade 2015, Banner and Higgs 2017, and Appendix S1.1 for
short review of the parameter-averaging literature). Instead,
our focus is on prediction, and predictive inference (sensu
Geisser 1993), as exemplified by model-averaged predictions
of species potential occurence for reserve-site selection (Mel-
ler et al. 2014) or the effect of roads on occupancy of ponds
by frogs (Dai and Wang 2011). Also, we only focus on aver-
aging sets of models that differ in structure, as opposed to
mere differences in initial conditions or parameter values
(Gibbs 1902, Johnson and Bowler 2009). The latter case is

called “ensemble” in the statistical and physical sciences,
while in ecology that term is used more loosely.
This review is divided into five parts: first, we present the

mathematical logic behind model averaging, and why this
alone puts severe constraints on how we do model averaging.
Then, in the second part, we review the different ways
through which model-averaging weights can be derived,
comparing Bayesian, information-theoretic, and tactical
perspectives (by tactical we mean heuristic approaches to
model averaging that are not explicitly based on statistical
theory). This is followed by a brief exploration of how to
quantify the uncertainty of model-averaged predictions.
Finally, we briefly illustrate model averaging with two
case studies, before closing with unresolved challenges, and
recommendations.

THE MATHEMATICS BEHIND MODEL AVERAGING

In accordance with virtually all discussions of model aver-
aging we encountered, we first focus on how model averag-
ing reduces prediction error, here quantified as mean
squared error (MSE) of a prediction bYm of model m. As for
any estimator, we can decompose this error into contribu-
tions of bias and variance:

MSEð bYmÞ ¼ biasð bYmÞ
n o2

þ varð bYmÞ: (1)

Bias refers to a systematic model error that would not
change if a new data set for the same system became avail-
able, while variance refers to the expected spread of model
predictions when fit with hypothetical new data sets for the
same system.
We can use Eq. 1 to examine the error of a weighted aver-

age eY of the predictions of several (M) contributing models,bY1; bY2; . . .; bYM

eY ¼
XM
m¼1

wm bYm; with
XM
m¼1

wm ¼ 1: (2)

The motivation for the weights wm is to adjust the average
such that is has improved properties over a simple average
(with equal weights) or a single candidate models (all weight
on one model).
We can see from Eq. 1 that bias, i.e., the difference

between the expectation of the averaged predictions and the
truth ( eY � y�), will depend directly on the bias of the con-
tributing models, as well as their weights (Eq. 2). The statis-
tical model-averaging literature often assumes that
individual models have no bias, and therefore tends to be
less interested in its contribution (Bates and Granger 1969,
Buckland et al. 1997, Burnham and Anderson 2002). In
contrast, for process models, reducing bias is often named as
one of the main motivations for model averaging (e.g., Solo-
mon et al. 2007, Gibbons et al. 2008, Dietze 2017). Implic-
itly, the assumption here is that model biases will tend to fall
on both sides of the truth, in which case they may cancel out
in an average.
Prediction variance (arising from n hypothetical repeated

samplings) is composed of two terms, the variance of each
contributing model’s prediction

2 DORMANN ET AL. Ecological Monographs
Vol. 0, No. 0



varð bYmÞ ¼ 1
n� 1

Xn
i¼1

ð bYm � bY i
mÞ2

and the covariances between predictions of model m and m0

covð bYm; bYm0 Þ ¼ 1
n� 1

Xn
i¼1

ð bYm � bY i
mÞð bYm0 � bY i

m0 Þ

For the average of two predictions, bY1 and bY2, this yields

varð eY Þ ¼ w2
1varð bY1Þ þw2

2varð bY2Þ þ 2w1w2covð bY1; bY2Þ (3)

When averaging several models, we expand Eq. 3 to

varð eY Þ ¼ var
XM
m¼1

wm bYm

 !
¼
XM
m¼1

w2
mvarð bYmÞ

þ
XM
m¼1

X
m0 6¼m

wmwm0covð bYm; bYm0 Þ

¼
XM
m¼1

XM
m0¼1

wmwm0covð bYm; bYm0 Þ

¼
XM
m¼1

XM
m0¼1

wmwm0qmm0rð bYmÞrð bYm0 Þ

(4)

where qmm0 is the correlation between bYm and bYm0 , and r(.)
is their standard deviation.
Combining Eqs. 1 and 3 we can see that the error of a

model-averaged prediction decomposes into

MSEð eY Þ ¼
XM
m¼1

wm Eð bYmÞ � y�
� � !2

þ
XM
m¼1

XM
n¼1

wmwm0qmm0rð bYmÞrð bYm0 Þ
(5)

where Eð bYmÞ � y� ¼ biasð bYmÞ represents prediction bias.

Understanding what influences the error of
model-averaged predictions

Eq. 5 allows us to make a number of statements about the
potential benefits of model averaging. We shall first illus-
trate the fundamental effects of bias, variance, and covari-
ance using simple toy examples. In the next sections, we
shall then move from this idealized examples to more realis-
tic situations.
First, when each model produces a distinct prediction, with

variances substantially lower than systematic differences
between models, bias dominates (Fig. 1 top). How useful
model averaging is in this situation depends on the biases of

FIG. 1. Conceptual depiction of the contributions of error to model averaging. (A) Contributing models have larger bias than variance. The
error of the average depends on how the bias is averaged out. It can increase or decrease compared to the best model. Adding a lot more models
will not change the error, unless this reduces bias. (B) Contributing models have similar bias and variance. In this case, averaging an increasing
number of models can reduce the variance of the error, while the bias remains. (C) Contributing models are unbiased, but have large variance. In
this case (assuming covariances between models are low), an increasing number of models can, in principle, make the error arbitrarily small.
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the individual models (see also Fig. 2 top row). As model
variance increases (or bias decreases), the error term is
increasingly dominated by variance, and assuming covari-
ances are low, the variance of the average (and therefore the
mean error) will be smaller than the variance of the single
model (Fig. 1 bottom). If the covariance of model predictions
is low, increasing the number of models in the average will
generally decrease the variance and therefore the prediction
error, while the bias of the average has no general connection
to the number of averaged models (Fig. 2, right column).
We thus conclude that, as bias becomes large relative to

prediction variance, model averaging is less and less likely to
be useful for reducing variance – but it may still be useful
for reducing bias (under the condition of bidirectional bias:
Fig. 2, lower row).
To understand these effects in more detail, consider the unli-

kely, but didactically important case that model predictions
are independent, meaning that their covariance is 0 and the
correlation matrix qmn of Eq. 5 becomes the identity matrix
(or, equivalently, the covariance term of Eq. 4 vanishes). If we
also assume both predictions have equal variances,
varð bY1Þ ¼ varð bY2Þ ¼ varð bY Þ, since w2 ¼ 1� w1, the above
equation simplifies to varð eY Þ ¼ ð2w2

1 � 2w1 þ 1Þvarð bY Þ. If
one model gets all the weight, we have varð eY Þ ¼ varð bY Þ. If
the two models receive equal weight, we have varð eY Þ ¼
ð2� 0:52 � 2� 0:5þ 1Þvarð bY Þ ¼ 0:5varð bY Þ, a considerable
improvement in prediction variance (and the minimum of this
equation). Other weights fall between these values. In other
words, model averaging can reduce prediction error because
weights enter as quadratic terms in Eq. 3, rather than linearly.
Indeed, Bates and Granger (1969) showed that for unbiased
models with uncorrelated predictions, the variance in the

average is never greater than the smaller of the individual pre-
dictions (making the important assumption that the weights
are known, which will be discussed in section Estimating
weights can thwart the benefit of model averaging).
The next thing to note is that the correlation between

model predictions, i.e., the matrix ðqijÞ 2 R
M�M, substan-

tially affects the benefit of model averaging (see also Fig. 3
and interactive tool in Data S1). In the best case, correla-
tions between model predictions are negative or at least
absent, and the second term of Eq. 5 is negative or vanishes.
Under these conditions, averaging can substantially decrease
the variance of the averaged prediction. As correlations
between predictions increase, the covariance term con-
tributes more and more to the overall prediction error. In
the extreme case of perfectly correlated predictions of the
single models, model averaging has no benefit for reducing
prediction variance.
The effect of correlations on the potential reduction of

prediction error has an analogy in biodiversity studies,
where it is called the “portfolio effect” (e.g., Thibaut and
Connolly 2013). It states that the fluctuation in biomass of a
community is less than the fluctuations of biomass of its
members, because the species respond to the environment
differently. This asynchrony in response is analogous to neg-
ative covariance in community members’ biomass, buffering
the sum of their biomasses.
This point also provides some important insights about

why machine learning methods, which often average a large
number of bad models, can work so well. When averaging
poor models, e.g., trees in a Random Forest, covariance is
negligible, but the variance of each model prediction is high.
Because wm becomes very small with hundreds of models

FIG. 2. Conceptualized outcomes of model averaging. Sampling distributions of model predictions are depicted as stylized empty triangle
on the see-saw (wider means less certain). Filled triangles represent the model predictions with unidirectionally bias (top row) or straddling
truth (bottom row), and positive, no, or negative covariances among model predictions in columns. In the top row, grey-shaded quadrants indi-
cate model combinations with bias in the same direction, leading to a biased average (tilted see-saw). In the bottom row, grey-shaded quadrants
indicate opposite biases, whichmay lead to less biased averaged prediction, assuming optimal model weights were found. Changes in prediction
covariance (columns) affect the uncertainty of the average, with negatively correlated predictions (right) yielding lowest uncertainty.
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(approximately 1/M), the variance of many averaged poor
models (with similar variance) tends to be low: varð eY Þ ¼PM

m¼1
1
M2 varð bYmÞ þ 1

M2

PM
m¼1

P
m6¼n covð bYm; bYnÞ � M 1

M2

varð bY Þ ¼ 1
M varð bY Þ; where the second term disappears due

to lack of correlations among predictions. We may speculate
that poor models typically also exhibit substantial but bidi-
rectional bias, which again would be reduced by averaging.
Putting bias, variance and correlation together (Fig. 2),

we note that model averaging will deliver smaller prediction
error when bias is bidirectional (i.e., model predictions over-
and underestimate the true value: bottom row of Fig. 2) and
predictions are negatively correlated (Fig. 2 bottom right).
Uni-directional bias will remain problematic (top row of
Fig. 2), irrespective of covariances among predictions.
Thus, for a given set of weights, the prediction error of

model-averaged predictions depends on three things: the
bias of the model average, as emerging from the bias of the
individual models, the prediction variances of the individual
models, and the covariance of those predictions.

Estimating weights can thwart the benefit of model averaging

So far, we have assumed that weights have fixed values,
and thus there is no uncertainty about them. Yet, the aim of
optimizing predictive performance suggests that weights
need to be estimated from the data. But estimation brings
associated uncertainty with it, and this has implications for
the actual benefits of model averaging: estimated “optimal”
weights will be suboptimal (Nguefack-Tsague 2014). With

such an error, even for only mildly correlated predictions,
the averaged prediction will have more variance, and possi-
bly bias, than if the (unknown) truly optimal weights were
used (Claeskens et al. 2016). It may, in fact, often be no bet-
ter than one obtained using arbitrary weights, e.g., equal
weights (Clemen 1989, Smith et al. 2009, Graefe et al. 2014,
2015). The “simple theoretical explanation” provided by
Claeskens et al. (2016) demonstrates that estimating weights
introduces additional variance into the prediction. As a con-
sequence, the predictions averaged with estimated weights
may be worse than that of a single model (in contrast to the
assertion of Bates and Granger 1969, see Claeskens et al.
2016 for an example).
Apart from the error of the estimate, a further open prob-

lem is to obtain a good estimator for the optimal weight in
the first place. Currently no closed solution is available, not
even for linear models (Liang et al. 2011). Neither Bayesian
nor information-theoretical model weights are designed to
minimize prediction error, and their weights will in general
not be optimal for that purpose. Some tactical approaches
estimate model weights explicitly to minimize prediction
error on hold-out data (in particular jackknife model aver-
aging and stacking; see Tactical approaches to computing
model weights). Only these approaches are at least trying to
estimate optimal weights for minimizing predictive error.
The interactive tool we provide (Fig. 3) allows readers to
explore this issue in a simple two-model case. It shows that,
in this simple case, estimating weights substantially reduces
the parameter space where model averaging is superior to
the best single model. Thus, the bias-variance trade-off

FIG. 3. When averaging is optimal, in the simplest case of two models that make correlated Gaussian predictions. The models are here
described by their biases (b1, b2, not shown), their standard deviations (r1, r2), and by the correlation (q) between them. Each panel shows
the regions in the ðr1; qÞ plane where model 1 is best (blue shading and contour line), model 2 is best (orange shading and contour line), and
where the optimal average is best (color gradient between blue and orange). Top row represents the case where weights, w, are known (i.e., with-
out error: rw ¼ 0), while the second row represents exactly the same settings, but with estimated weights (with uncertainty rw ¼ 0:2). Notice
that when w is estimated with uncertainty, the contours marking the transition between each single model and the average move into the
washed-out colours, i.e., deviate from the fixed w situation in the upper panels. These curves now represent a level set at the values
�w�
1 ¼ 1� rw (blue curve) and �w�

2 ¼ rw (orange curve). As a consequence, the area where model averaging with estimated weights is superior to
the better single model decreases substantially relative to the fixed w case, and disappears completely for rw � 0:5. Formal derivations for the
contours and the critical weights is given in Appendix S1.2, the interactive tool itself in Data S1. Biases are set to b1 ¼ 3 and b2 ¼ 2.
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applies also to model averaging, in the sense that weight esti-
mation introduces additional parameters and therefore
higher model complexity to the analysis. It is therefore
important to think carefully about when to use model aver-
aging, as it can add unnecessary complexity.
Uncertainty about the optimal weights does not imply

that estimated weights are of no use, or that the use of arbi-
trary weights (e.g., equal weights) is generally superior.
While uncertainty in estimated weights increases prediction
error, the ability to statistically downweight or wholly
remove unsuitable models from the prediction set is a sub-
stantial benefit. In Claeskens et al. (2016) and similar simu-
lations, all models considered are “alright” (bias-free and
with similar prediction variance), which obviously need not
be the case in practical applications. Thus, the question is
not if estimated model weights are useful in general, but
how useful they are beyond their function of filtering out
inferior models from the average. We believe there is a bene-
fit beyond this filter function, but we recognize that there is
a need for further research to better demonstrate this bene-
fit, and understand when it occurs.

Model averaging (typically) reduces prediction errors

To complement these theoretical considerations, we exam-
ined 180 studies (a random draws from the results of a sys-
tematic literature search: see Appendix S1.7) regarding
reported benefits from model averaging.
The majority of studies we encountred used an empirical

approach to assess predictive performance, i.e., forecasting,
hindcasting, or cross-validation to observed data (e.g.,
Namata et al. 2008, Marmion et al. 2009a,b, Grenouillet
et al. 2010, Montgomery et al. 2012, Engler et al. 2013,
Smith et al. 2013, Edeling et al. 2014, Trolle et al. 2014).
Model averaging typically yielded lower prediction errors
than the individual contributing models. Most of these stud-
ies used test data sets to estimate predictive success, and rely
critically on the assumption of independence between test
and training data sets (Roberts et al. 2017). Few studies used
simulated data to examine the performance of model averag-
ing under specific conditions (e.g., small sample size, model
structure uncertainty, missing data; Ghosh and Yuan 2009,
Schomaker 2012), and even fewer employ analytical mathe-
matics (Shen and Huang 2006, Potempski and Galmarini
2009, Chen et al. 2012, Zhang et al. 2013).

Quantifying uncertainty of model-averaged predictions

So far, we have shown that model averaging can produce
predictions with a smaller error than any of the contributing
models by averaging away their variance and bias. Those
gains, however, generally decrease with increasing covari-
ance of the individual model predictions, and increasing
mean bias of the contributing models. Moreover, weighted
averaging allows reducing the weight of models poorly sup-
ported by data, but at the expense of introducing additional
variance in the average, induced by the weight estimation.
Besides having an estimate with low error, the second goal

of most statistical methods is to provide a measure of (un)cer-
tainty of that estimate. The nature of this measure differs
between tactical, Bayesian, and frequentist approaches.

Tactical aproaches, such as machine learning, are usually sat-
isfied with providing an estimate of predictive error on new
data, typically obtained through cross-validation. This proce-
dure can be directly extended to model-averaged predictions.
For Bayesian and frequentist methods, the issue of extend-

ing the conventional methods for estimating uncertainty to
model-averaging is somewhat more complicated. Bayesian
methods quantify uncertainty via the posterior distribution,
which can be summarized by a Bayesian credible interval.
One would interpret a 95% credible interval as displaying a
95% certainty for the true value to be contained in the inter-
val. Frequentist methods traditionally provide a confidence
interval. Under repeated sampling of new data sets under
identical conditions, a correctly defined 95% confidence inter-
val should contain the true value in 95% of the cases.
To construct a frequentist confidence interval for a model-

averaged prediction, we have to ask ourselves how this model-
averaged prediction will spread around the true value under
repeated sampling. Fortunately, we have already derived this
result in Eqs. 1–5. For simple cases, we can directly convert
this into a confidence interval. For example, for an unbiased
average, with uncorrelated models of equal weight and vari-
ance, the standard deviation of the average, and thus its confi-
dence interval, should decrease with one over the square root
of the number of contributing models, times the confidence
interval of the single models. In general, however, the calcula-
tion of the confidence interval of the average will have to take
the confidence intervals of all contributing models, as well as
their weights, covariance and bias into account.
Buckland et al. (1997) proposed a simplification of Eq. 5,

which considers bias and variance of the averaged models
(for derivation see Burnham and Anderson 2002:159–162)

varð eY Þ ¼
XM
m¼1

wm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð bYmÞ þ c2m

q !2

(6)

Misspecification bias of model m is computed as
cm ¼ bYm � eY , thus assuming (explicitly on page 604 of of
Buckland et al. 1997) that the averaged point estimate eY is
unbiased and can hence be used to compute the bias of the
individual predictions. This assumption can be visualized in
Fig. 2 as the situation where the empty triangles always sit
right on top of “truth.” This assumption is problematic, as it
cannot be met by unidirectionally biased model predictions,
nor when weights wm fail to get the weighting exactly right
and thus eY remains biased. Less problematically, Buckland
et al. (1997) also assumed that predictions from different
models are perfectly correlated, making the covariance term
as large as possible, and variance estimation conservative.
The distribution theory behind this approach has been criti-
cized as “not (even approximately) correct” (Claeskens and
Hjort 2008:207), but shown to work well in simulations
(Lukacs et al. 2010, Fletcher and Dillingham 2011).
Improving on Eq. 6 requires knowledge of the correlation

of model predictions qmm0 (Eq. 5). The key problem is that
there is no analytical way to compute qmm0. Bootstrapping,
although computationally costly, offers a good solution to
this problem.
While the obstacles to calculate confidence intervals

for model-averaged predictions may seem somewhat
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discouraging, it should be noted that alternatives to model
averaging do not necessarily fare better. Predictions from a
selected single-best model always underestimate the true pre-
diction error (e.g., Namata et al. 2008, Fletcher and Turek
2012, Turek and Fletcher 2012). The reason is that the
uncertainty about which model is correct is not included in
this final prediction: we predict as if we had not carried out
model selection but had known from the beginning which
model would be the best (as if the model had been “pre-
scribed”: Harrell 2001). Thus, even if we were able to choose,
from our model set M, the model closest to truth, we would
still need to adjust the confidence distribution for model
selection; and a perfect adjustment was analytically shown
not to exist (Kabaila et al. 2015).
Accordingly, simulation studies have suggested that model

averaging may improve coverage (Wintle et al. 2003, Namata
et al. 2008, Zhao et al. 2013), presumably because the process
of averaging allows us to take into account model uncertainty
(Liang et al. 2011). Yet, given the diversity of approaches to
computing model weights encountered in Approaches to Esti-
mating Model-Averaging Weight, these studies cannot be seen
as conclusive, only as suggestive, for the improvement of
nominal coverage using model averaging. For example
Fletcher and Turek (2012) and Turek and Fletcher (2012)
explore how model averaging can improve the tail areas of
the confidence distribution. These two studies, however, as
well as those cited before, assumed that the full model, refer-
ring to the model that includes all sub-models prior to any
model selection (see Appendix S1.3), is not in the set. The
approach by Fletcher and Turek (2012) was re-analyzed by
Kabaila et al. (2015). The key finding of this latter study is
that the full model coverage was still superior to all other
model averaging approaches, suggesting that the full model
should currently be kept in mind, both for inference, minimal
bias and correct prediction intervals (see also Harrell
2001:59). Such findings sit uncomfortably with the bias–vari-
ance trade-off (Hastie et al. 2009), which states that overly
complex models have poor predictive performance; and
indeed the full model has high prediction variance.
Regrettably, such reasoning cannot be extended in an

obvious way to non-nested models, process models, or
machine learning models. Here, model averaging seems with-
out alternative for propagating model selection uncertainty
into prediction uncertainty more fairly.
Our final option to quantify uncertainty, the Bayesian

credible interval, can be interpreted as a mixture distribu-
tion. In a two-step process, the model weights first deter-
mine the probability of any model to be correct, and the
uncertainty of each model is then mixed additively into a
averaged uncertainty. If the predictions of all individual
models are identical, the final distribution will remain the
same; from the perspective of Eq. 5, this is identical to
assuming that the average models are perfectly correlated,
although the logical motivation for the mixing is different. If
predictions differ widely, e.g., due to bias, the mixed confi-
dence distribution will be much wider and possibly multi-
modal.
To illustrate the various Bayesian and frequentist options,

we calculated predictive uncertainties and coverage for four
different options for a set of simple linear regressions in
Fig. 4:

1) Make the assumption that model-averaged predictions are
unbiased. Use bootstrapping to estimate covariances of
predictions for each model. From these estimates, compute
prediction variance according to Eq. 5. This solution is
computer-intensive, but it takes into account covariance of
model predictions. On the other hand, it cannot account
for bias, and should thus not be used when bias of the esti-
mator is suspected, for example from cross-validation.

2) Make the assumption that model-averaged predictions
are unbiased. Use Buckland et al. (1997)’s approach
(Eq. 6). This will yield wider estimates than option 1,
because assumptions about bias and correlation are more
conservative.

3) Use a mixture distribution to compute the confidence
distribution of the average, assuming effectively that pre-
dictions from different models are perfectly correlated,
but possibly biased.

4) Fit the full model (if available) and use its confidence dis-
tribution, which can rarely be improved on (Kabaila
et al. 2015).

When averaging models with largely independent (i.e.,
uncorrelated) predictions, only the bootstrap-estimated covari-
ance matrix (option 1 above) will also compute lower vari-
ances (according to Eq. 4). In our example (Fig. 4, see Data
S1 for details), “propagation” produced the tightest confidence
interval (and hence lowest coverage), followed by “Buckland”
and “mixing”. However, neither of these confidence intervals
seemed large enough, as all had too low coverage (suggesting
model bias to be relevant in this example). Only the full model
produces accurate confidence intervals and coverage. Further
simulations along these lines will have to show how these
approaches perform for more complex models and situations.

APPROACHES TO ESTIMATING MODEL-AVERAGING WEIGHTS

So far, we have discussed the properties of a weighted
model average, but we have not discussed how to estimate
the model-averaging weights. Estimating weights aims at
abating poorly fitting, and elevating well-predicting models,
and the actual method for estimating weights has obvious
fundamental importance for the quality of an averaged pre-
diction. Different perspectives on model-averaging weights
have emerged (Table 1), which can be broadly classified into
four categories of decreasing probabilistic interpretability:

1) In the Bayesian perspective, model weights are probabili-
ties that model Mi is the “true” model (e.g., Link and
Barker 2006, Congdon 2007).

2) In the information-theoretic framework, model weights
are measures of how closely the proposed models
approximate the true model as measured by the Kull-
back-Leibler divergence, relative to other models.

3) In a “tactical” perspective, model weights are parameters to
be chosen in such away as to achieve best predictive perfor-
mance of the average. No specific interpretation of the
model is attached to the weights; they only have to work.

4) Assigning fixed, equal weights to all predictions can be
seen as a reference na€ıve approach, representing the situ-
ation without adjusting for differences in models’ predic-
tive abilities.
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We shall address these four perspectives in turn, also hint-
ing at relationships among them.

Bayesian model weights

Theory.—Bayes’ formula can be applied to choosing among
models in much the same way as to parameter values
(Wasserman 2000). To perform inference with multiple mod-
els and their parameters at the same time, one can write
down the joint posterior probability PðMi;HijDÞ of model
Mi with parameter vectorHi, given the observed data D, as

PðMi;HijDÞ / LðDjMi;HiÞ � pðHiÞ � pðMiÞ; (7)

where LðDjMi;HiÞ is the likelihood of model Mi, pðHiÞ is
the prior distribution of the parameters of the respective
model Mi, and pðMiÞ is the prior weight on model Mi.
In practice, one is often interested in some simplified statis-

tics from this distribution, such as the model with the highest
posterior model probability, or the distribution of a predic-
tion including model selection uncertainty. To obtain this
information, we can marginalize (i.e., integrate) over parame-
ter space, or marginalize over model space, respectively.
If we marginalize over parameter space, we obtain poste-

rior model weights that represent the relative probability of
each model (whilst marginalizing over model space yields
averaged parameters, which we shall not address here). We
can calculate these weights as the marginal likelihood of

each model, defined as the average of Eq. 7 across all k
parameters for any given model

PðDjMiÞ /
Z
H1

� � �
Z
Hk

LðDjMi;HiÞpðHiÞdH1 � � � dHk: (8)

From the marginal likelihood, we can compare models via
the Bayes factor, defined as the ratio of their marginal likeli-
hoods (e.g., Kass and Raftery 1995)

BFi;j ¼ PðDjMiÞ
PðDjMjÞ ¼

R
LðDjMi;HiÞpðHiÞdHiR
LðDjMj ;HjÞpðHjÞdHj

(9)

with the multiple integral now pulled together for notational
convenience. For more than two models, however, it is more
useful to standardize this quantity across all models in
question, calculating a Bayesian posterior model weight
pðMijDÞ (including model priors pðMiÞ: Kass and Raftery
1995) as

posterior model weighti ¼ pðMijDÞ

¼ PðDjMiÞ pðMiÞP
j PðDjMjÞpðMjÞ :

(10)

Estimation in practice.—While the definition of Bayesian
model weights and averaged parameters is straightforward,
the estimation of these quantities can be challenging. In

FIG. 4. A comparison of different approaches to quantifying uncertainty when combining predictions from four linear models (dashed
curves) with equal weights. (A) Estimates of predictive uncertainty in a single example run. Truth is indicated by the vertical line. Error prop-
agation based on bootstrapped estimates for Eq. 5, Buckland et al.’s correction and model mixing yield (substantially) smaller uncertainties
than the full model. (B–E) Histograms of the cumulative density of the estimated uncertainties at the true values. The numbers display the
coverage for the 95% confidence interval.
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practice, there are two options to numerically estimate the
quantities defined above, both with caveats.
The first option is to sample directly from the joint poste-

rior (Eq. 7) of the models and the parameters. Basic algo-
rithms such as rejection sampling can do that without any
modification (e.g., Toni et al. 2009), but they are inefficient
for higher-dimensional parameter spaces. More sophisti-
cated algorithms such as MCMC and SMC (see Hartig
et al. 2011, for a basic review) require modifications to deal
with the issue of different number of parameters when
changing between models. Such modifications (mostly the
reversible-jump MCMCs, rjMCMC; Green 1995; see
Appendix S1.5.1) are often difficult to program, tune and
generalize, which is the reason why they are typically only
applied in specialized, well-defined settings. The posterior
model probabilities of the rjMCMC are estimated as the
proportion of time the algorithm spent with each model,
measured as the number of iterations the algorithm drew a
particular model divided by the total number of iterations.
The second option is to approximate the marginal likeli-

hood in Eq. 8 of each model independently, renormalize
that into weights, and then average predictions based on
these weights. The challenge here is to get a stable approxi-
mation of the marginal likelihood, which can be problematic
(Weinberg 2012; see Appendix S1.5.1). Still, because of the
relatively simple implementation, this approach is a more
common choice than rjMCMC (e.g., Brandon and Wade
2006).

Influence of priors.—A problem for the computation of
model weights when performing Bayesian inference across
multiple models is the influence of the choice of parameter
priors, especially “uninformative” ones (see Chickering and
Heckerman 1997, Hoeting et al. 1999: section 5).
The challenge arises because in Eqs. 8 and 9 the prior density

pðhiÞ enters the marginal likelihood, and hence the Bayes fac-
tor, multiplicatively. This has the somewhat unintuitive conse-
quence that increasing the width of an uninformative
parameter prior will linearly decrease the model’s marginal like-
lihood (e.g., Link and Barker 2006). That Bayesian model
weights are strongly dependent on the width of the prior choice
has sparked discussion of the appropriateness of this approach
in situations with uninformative priors. For example, in situa-
tions where multiple nested models are compared, the width of
the uninformative prior may completely determine the com-
plexity of models that are being selected. One suggestion that
has been made is to not at all perform multi-model inference
with uninformative priors, but at least additional corrections
are necessary to apply Bayes factors weights (O’Hagan 1995,
Berger and Pericchi 1996). One such correction is to calibrate
the model on a part of the data first, use the result as new priors
and then perform the analysis described above (intrinsic Bayes
factor: Berger and Pericchi 1996, fractional Bayes factor: O’Ha-
gan 1995). If enough data are available so that the likelihood is
sufficiently peaked by the calibration step, this approach should
eliminate any complication resulting from the prior choice (for
an ecological example see van Oijen et al. 2013).

TABLE 1. Approaches to model averaging, in particular to deriving model weights, their computational speed, likelihood/number of
parameter requirement, as well as references to implementation in R.

Model averaging approach Speed
Likelihood value |
pm required?† Comments (R-package)‡

Reversible jump MCMC Slow Yes|no Requires individual coding of each model (rjmcmc)
Bayes factor Slow Yes|no Requires specification of priors (BayesianTools, BayesVarSel)
Bayesian model averaging
using expectation
maximization (BMA-EM)

Moderate Yes|no Requires validation step (BMA, EBMAforecast)

Fit-based weights Rapid-slow Yes|yes§ AIC, BIC, and Cp can be easily computed from fitted models
(stats, MuMIn). (LOO-CV as option in MuMIn,¶ also in loo,
cvTools, caret, crossval). DIC and WAIC should be implemented
in a Bayesian approach for full benefit (BayesianTools)

Adaptive regression by
mixing with model
screening (ARMS)

Moderate Yes|yes No up-to-date implementation (ARMS#)

Bootstrapped model
weights

Slow No|no (MuMIn,¶ boot, resample)

Stacking Slow No|no Requires validation step (MuMIn¶)
Jackknife model averaging
(JMA)

Slow No|no Computation time increases linearly with n (MuMIn,¶ boot,
resample)

Minimal variance Rapid No|no Based only on predictions (MuMIn¶)
Cos-squared Rapid No|no Based only on predictions (MuMIn¶)
Model-based model
combinations

Moderate No|no Requires setting up regression-type analysis with model
predictions, plus validation step‡

Equal weight (1/M) Rapid No|no M is number of models considered

Notes: AIC, Akaike information criterion; WAIC, widely applicable information criterion; BIC, Bayesian information criterion.
†Does this method require a maximum-likelihood fit and/or number of parameters (pm) of the model? Typically these two are linked, since

maximum-likelihood approaches typically employ the general linear model (GLM), which provides both information.
‡See also Appendix for details and case studies in Data SI for examples of implementation in R.
§While nonparametric models have no readily extractable number of parameters, a Generalized Degrees of Freedom-approach could be

used to compute them (Ye 1998). Similarly, but more efficiently, cross-validation can be used to estimate the effective number of parameters
(Hauenstein et al. 2017).
¶Implemented in MuMIn as part of this publication.
#http://users.stat.umn.edu/~sandy/courses/8053/handouts/Aaron/ARMS/.
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Bayesian-flavoured approaches.—Apart from the natural
Bayesian average (see also Yao et al. 2017), there are a num-
ber of other approaches that are connected to or inspired by
Bayesian thinking.
In a set of influential publications, Raftery et al. (1997),

Hoeting et al. (1999), and Raftery et al. (2005) introduced
post hoc Bayesian model averaging, i.e., for vectors of pre-
dictions from already fitted models. The key idea is to itera-
tively estimate the proportion of times a model would yield
the highest likelihood within the set of models (through
expectation maximization, see Appendix S1.5.2 for details),
and use this proportion as model weight. In the spirit of the
inventors, we refer to this approach as Bayesian model aver-
aging using Expectation-Maximization (BMA-EM), but
place it closer to a frequentist than a Bayesian approach, as
the models were not necessarily (and in none of their exam-
ples) fitted within the Bayesian framework. It has been used
regularly, often for process models (e.g., Gneiting et al.
2005, Zhang et al. 2009), where an rjMCMC procedure
would require substantial programming work at little per-
ceived benefit, but also in data-poor situations in the politi-
cal sciences (Montgomery et al. 2012).
Chickering and Heckerman (1997) investigate approxima-

tions of the marginal likelihood in Eq. 9, such as the Baye-
sian Information Criterion (BIC, as defined in the next
section; see also Appendix S1.5.3) and find them to work
well for model selection, but not for model averaging. In
contrast, Kass and Raftery (1995:778) state the eBIC is an
acceptable approximation of the Bayes factor, and hence
suitable for model averaging, despite being biased even for
large sample sizes. These approximations may be improved
when using more complex versions of BIC (SPBIC and
IBIC; Bollen et al. 2012).
The “widely applicable information criterion” WAIC

(Watanabe 2010 and an equivalent WBIC Watanabe 2013)
are motivated and actually analytically derived in a Bayesian
framework (Gelman et al. 2014). With an uninformative
prior, it can be seen as a variation of AIC (see next section).
The WAIC is computed, for each model, from two terms
(Gelman et al. 2014): (1) the log pointwise predicted density
(lppd) across the posterior simulations for each of the n pre-
dicted values, defined as lppd ¼ log

Qn
i¼1 pposteriorðyiÞ; and

(2) a bias-correction term pWAIC ¼Pn
i¼1 varðlogðpðyijhsÞÞÞ,

where var is the sample variance over all S samples of the
posterior distributions of parameters h. The WAIC is then
defined as WAIC ¼ �2lppdþ 2pWAIC. In other words, the
WAIC is the likelihood of observing the data under the pos-
terior parameter distributions, corrected by a penalty of
model complexity proportional to the variance of these like-
lihoods across the MCMC samples. Model weights are com-
puted from WAIC analogously to Eq. 11 below.

Information-theoretic model weights

In the information-theoretic perspective, models closer to
the data, as measured by the Kullback-Leibler divergence,
should receive more weight than those further away.
There are several approximations of the KL-divergence,

most famously Akaike’s Information Criterion (AIC;
Akaike 1973, Burnham and Anderson 2002). AIC and
related indices can be computed only for likelihood-based

models with known number of parameters (pm), restricting
the information-theoretic approach to GLM-like models
(including GAM):

AICm ¼ �2‘m þ 2pm and

wm ¼ e�0:5ðAICm�AICminÞP
i2Me�0:5ðAICi�AICminÞ

(11)

where ‘m is the log-likelihood of model m.
In the ecological literature, AIC (and its sample-size cor-

rected version AICc, and its adaptations to quasi-likelihood
models such as QIC; Pan 2001, Claeskens and Hjort 2008)
is by far the most common approach to determine model
weights (for recent examples see, e.g., Dwyer et al. 2014,
Rovai et al. 2015), despite the fact that the reasoning
behind this choice is not entirely clear. AIC-weights
(Eq. 11) have been interpreted as Bayesian model probabil-
ities (Burnham and Anderson 2002:75, Link and Barker
2006), assuming a specific, model complexity and sample
size-dependent, “savvy prior” (Burnham and Anderson
2002:302, see also Hooten and Hobbs 2015:16, for refor-
mulation as regularization prior). An alternative interpre-
tation is the proportion of times a model would be chosen
as the best model under repeated sampling (Hobbs and Hil-
born 2006), but such an interpretation is contentious
(Richards 2005, Bolker 2008, Claeskens and Hjort 2008).
In an anecdotal comparison, Burnham and Anderson
(2002:178) showed that AIC weights are substantially dif-
ferent from bootstrapped model weights. The latter were
proposed by Buckland et al. (1997) and represent the pro-
portion of bootstraps a model is performing best in terms
of AIC: see case study 1 below. In simulations, AIC weights
did not reliably identify the model with the known lowest
KL-divergence or prediction error (Richards 2005,
Richards et al. 2011). Instead, Mallows’ model averaging
(MMA) has been shown to yield the lowest mean squared
error for linear models (Hansen 2007, Schomaker et al.
2010). Mallows’ Cp penalizes model complexity equivalent
to �2‘m � nþ 2pm (for n data points; rather than AIC’s
�2‘m þ 2pm, Eq. 11).
Schwartz’ Bayesian Information Criterion was derived to

find the most probable model given the data (Schwartz
1978, Shmueli 2010), equivalent to having the largest Bayes
factor (see previous section). BIC uses logðnÞ rather than
AIC’s “2” as penalization factor for model complexity
(Appendix S1.5.3). A particularly noteworthy modification
of the AIC exist, where the model fit is assessed with respect
to a focal predictor value, e.g., a specific age or temperature
range, yielding the Focussed Information Criterion (FIC;
Claeskens and Hjort 2008). We are not aware of a systematic
simulation study comparing the performance of these model
averaging weights, but AIC’s dominance should not indicate
its superiority (see also case study 1 below).
The weighting procedure can additionally be wrapped

into a cross-validation and model pre-selection, which leads
to the ARMS-procedure (Adaptive Regression by Mixing
with model Screening; Yang 2001, Yuan and Yang 2005,
Yuan and Ghosh 2008). We shall not present details on
ARMS here (for cross-validation see next section), because
we regard model pre-selection as an unresolved issue (see
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Validation-based weighting or validation-based pre-selection
of models).

Tactical approaches to computing model weights

Methods covered in this section share the “tactical” goal
of choosing weights to optimize prediction (e.g., reduce pre-
diction error), without a specific reference to a statistical
theory such as Bayesian inference or information theory.
The most straightforward approach in this area is to make

the averaging weight dependent on an estimate of the predic-
tive error of each model, usually obtained by cross-valida-
tion. Cross-validation approximates a model’s predictive
performance on new data by predicting to a hold-out part of
the data (typically between 5 and 20 folds, down to leave-
one-out cross-validation, which omits each single data point
in turn). The fit to the hold-out can be quantified in differ-
ent ways. If the data can be reasonably well described by a
specific distribution with log-likelihood function ‘ (even if
the model algorithm itself is non-parametric), the log-likeli-
hood of the data in the k folds can be computed and
summed (van der Laan et al. 2004, Wood 2015:36):

‘mCV ¼
Xk
i¼1

‘ðy½i�jĥmy½�i� Þ (12)

where the index ½�i� indicates that the data y½i� in fold i were
not used for fitting model m and estimating model parame-
ters ĥmy½�i�. It can be shown that leave-one-out cross-validation

log-likelihood is asymptotically equivalent to AIC and thus
KL-distance (Stone1977), albeit at a higher computational
cost. Hence, computing model weights wm

CV (Hauenstein
et al. 2017)

wm
CV ¼ e‘

m
CVP

i2M e‘iCV
(13)

creates a weighting scheme very similar to AIC-weights,
which implicitly penalizes overfitting.
Other measures of model fit to the hold-out folds have

been used, largely as ad hoc proxies for a likelihood function
(e.g., in likelihood-free models): pseudo-R2 (e.g., Nagelkerke
1991, Nakagawa and Schielzeth 2013), area under the ROC
curve (AUC: Marmion et al. 2009a, Ordonez and Williams
2013, Hannemann et al. 2015), or True Skill Statistic
(Diniz-Filho et al. 2009, Garcia et al. 2012, Engler et al.
2013, Meller et al. 2014). In these cases, weights were com-
puted by substituting ‘CV in Eq. 13 by the respective mea-
sure, or given a value of 1/S for a somewhat arbitrarily
defined subset of S (out of M) models, e.g., those above a
threshold considered minimal satisfactory performance
(Crossman and Bass 2008, Crimmins et al. 2013, Ordonez
and Williams 2013).
Largely ignored by the ecological literature are two other

non-parametric approaches to compute model weights:
stacking and jackknife model averaging (see Appendix S1.4
for discussion of averaging within machine-learning algo-
rithms). Both are cross-validation based, but unlike simple
cross-validation weights, which are based on the performace
of each contributing model on hold-out data, stacking and

jacknife model averaging explicitly optimize weights to
reduce the error of the average on hold-out data.
Stacking (Wolpert 1992, Smyth and Wolpert 1998, Ting

and Witten 1999) finds the optimized model weights to
reduce prediction error (or maximize likelihood) on a test
hold-out of size H. This is, for RMSE and likelihood,
respectively:

arg min
wm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
H

XH
i¼1

y½i� �
XM
m¼1

wm
bf Xi

bhm½�i�
���� � !2

vuut8<:
9=;

(Hastie et al. 2009) and

arg min
wm

‘ y½i�
XM
m¼1

wm
bf Xi

bhm½�i�
���� ������

 !( )

where bf ðXijbhm½�i�Þ is the prediction of model m, fitted without
using data i, to data i. This procedure is repeated many
times, each time yielding a vector of optimized model
weights, wm, which are then averaged across repetitions and
rescaled to sum to 1. Yao et al. (2017) extend this approach
also to Bayesian models to provide a clear prediction-error
minimizing goal. Smyth and Wolpert (1998) and Clarke
(2003) report stacking to generally outperform the cross-
validation approach from two paragraphs earlier, and Baye-
sian model averaging, respectively (see also in Case Studies
and Appendix S5).
In Jackknife Model Averaging (JMA; Hansen and Racine

2012), each data point is omitted in turn from fitting and
then predicted to (thus actually a leave-one-out cross-valida-
tion rather than a “jackknife”). Then, weights are optimized
so as to minimize RMSE (or maximize likelihood) between
the observed and the fitted value across all N “jackknife”
samples. The optimization function is the same as for stack-
ing, except that H ¼ N. Thus, in stacking, weights are opti-
mized once for each run, while for the jackknife only one
optimization over all N leave-one-out-cross-validations is
required (further details and examples with R-code are given
in Appendix S1.5.6).
The forecasting (i.e., time predictions) literature (reviewed

in Armstrong 2001, Stock and Watson 2001, Timmermann
2006) offers two further approaches. Bates and Granger
(1969)’s minimal variance approach attributes more weight
to models with low-variance predictions. More precisely, it
uses the inverse of the variance-covariance matrix of predic-
tions, R�1, to compute model weights. In the multi-model
generalisation (Newbold and Granger 1974) the weights vec-
tor w is calculated as:

wminimalvariance ¼ ð10R�11Þ�11R�1; (14)

where 1 is an M-length vector of ones. This is the analytical
solution of Eq. 5, assuming no bias and ignoring the problem
that weights are random variates, under the weights-sum-to-
one constraint. Eq. 14 does not ensure all-positive weights,
nor is it obvious how to estimate R. One option (used in our
case studies) is to base R on the deviation from a prediction to
test data in lieu of measure of past performance (following
recommendation of Bates and Granger 1969).
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Finally, Garthwaite and Mubwandarikwa (2010) devised
a rarely used method, called the “cos-squared weighting
scheme,” designed to adjust for correlation in predictions by
different models. It was motivated by (1) giving lower weight
to models highly correlated with others (thereby reducing
the prediction variance contributed through covariances in
Eq. 5), (2) division of weights when a new, near-identical
model prediction is added to the set, and (3) reducing all
weights when more models are added to the set. Weights are
computed as proportional to the amount of rotation the pre-
dictions would require to make them orthogonal in predic-
tion space, hence the trigonometric name of their approach.

Modelling model weights.—So far, weights were always con-
stant. However, one might also consider making weights
dependent on other variables. This approach, which we term
“model-based model combinations” (MBMC, also called
“superensemble modeling”) was first proposed by Granger
and Ramanathan (1984). Here a statistical model f is used to
combine the predictions from different models, as if they
were predictors in a regression: eY 	 f ð bY1; bY2; . . .; bYmÞ (see
Fig. 5A). The regression-type model f can be of any type,
such as a linear model or a neural network. We call this
regression the “supra-model” in order to distinguish
between different modelling levels.
A very simple supra-model would compute the median of

predictions for each point Xi (e.g., Marmion et al. 2009a).
Different models are used in the “average” without requiring
any additional parameter estimation. Median predictions
imply varying weights, as the one or two models considered
for computing the median may change between different Xi.
An ideal model combination could switch, or gently tran-

sition, between models (such as manually constructed by
Crisci et al. 2017). Since the predictions are combined more

or less freely in model-based model combinations to yield
the best possible fit to the observed data, MBMC should be
superior to any constant-weight-per-model approach (see
Fig. 5B), as was indeed found by Diks and Vrugt (2010).
This advantage comes with a severe drawback: a high pro-
clivity to overfitting, as we fit the same data twice (once to
each model, then again to their prediction regression).
This does not seem to be recognized as a problem (despite

being a key message of Hastie et al. 2009), as all studies we
found incorrectly cross-validate the supra-model only, not
the entire workflow (if at all; e.g., Krishnamurti et al. 1999,
Thomson et al. 2006, Diks and Vrugt 2010, Breiner et al.
2015, Romero et al. 2016). To correctly cross-validate
MBMCs, one has to produce hold-outs before fitting the
contributing models, and evaluate the MBMC prediction on
this hold-out (Fig. 5, Appendix S5.9 and case studies).
Note that supra-models may differ substantially in their

ability to harness the contributing models. As it is a yet
fairly unexplored field in model averaging, analysts are
advised to try different supra-model types (Fig. 5).

Equal weights

Last, we discuss the most trivial weighting scheme: in
many fields of science (climate modelling, economics, politi-
cal sciences), model averaging proceeds with giving the
structurally different models equal weight, i.e., 1/M (John-
son and Bowler 2009, Knutti et al. 2010, Graefe et al. 2014,
Rougier 2016). In ecology, studies analyzing species distribu-
tions reported equal weights to be a very good choice when
assessed using cross-validation (Crossman and Bass 2008,
Marmion et al. 2009a, Rapacciuolo et al. 2012), but no bet-
ter than the single models on validation with independent
data (Crimmins et al. 2013). Equal weights may serve as a

FIG. 5. A simple model-based model combination (MBMC) example. (A) Three models (solid grey lines: constant, linear, and quadratic)
fitted separately to a data set (points, following the thin black line). Using a linear model (with quadratic terms: red) to combine the three mod-
els’ its may improve it, even more so than the full model (green), and with narrower conidence intervals. Doted lines indicate the weight that
each model receives at each point in the linear model. Such MBMC did not necessarily improve fit, as Random Forest-based model combina-
tions showed (blue). (B) Using fivefold cross-validation around the entire workflow shows that the linear supra-model (Supra-LM) indeed
improved prediction (decreased root mean squared prediction error), while the Random Forest-supra-model (Supra-rF) did not. The full
model (as reference) comprised all terms present in Supra-LM, but was fitted directly. Boxes are 50% quantiles, and whiskers are min/max
values (unless those exceed the 50% quantiles by 1.5 the interquartile range); the median is indicated by the horizontal black line.
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reference approach to see whether estimating weights
reduces prediction error for this specific set of models. In
that sense, we may argue, all the above weight estimation
approaches only serve to separate the wheat from the chaff;
once a set of reasonable models has been identified, equal
weights are apparently a good approach.

CASE STUDIES

All methods discussed above can be applied to simple
regression models, while some explicitly rely on a model’s
likelihood and can thus not be used for non-parametric
approaches. We therefore devised two case studies, the first
being a rather simple example to illustrate the use of all meth-
ods in Table 1, and the second a more complicated species
distribution case study based on a reduced set of methods.
Note that we do not include adaptive regression by mixing
with model screening (ARMS; Yang 2001) because its more
sophisticated variations (Yuan and Yang 2005) are not read-
ily implemented in R, and the basic ARMS is barely different
from AIC model averaging for a preselected set of models.

Case study 1: Simulation with Gaussian response, many
models and few data points

In this first, simulation-based case study, we explore the
variability of model-averaging approaches in the common
case where several partially nested models are fit (see Data
S1 for details and code). The simulation was set up so that
several of the fitted models have similar support as explana-
tions for the data. This was achieved by generating the
response differently in each of two groups (using similar, but
not identical predictors). We simulated 70 data points with 4
predictors yielding 24 = 16 candidate models, and another
70 data points for validation. We computed model weights
in 19 different ways (Table 1) and compared the prediction
error of weighted averages, as well as of the individual mod-
els to the validation data points. Simulation and analyses
were repeated 100 times.
Two results emerged from this simulation that are worth

reporting. First, prediction error (quantified as RMSE) was
similar across the 19 weight-computing approaches, with a

few noticeably poor exceptions (the two MBMC
approaches, minimal variance and the cos-squared scheme;
Fig. 6), and most were no better than those of the best nine
single model predictions. Second, most averaging
approaches gave some weight (w[ 0:01) to 10 or more mod-
els (Table 2), despite models being overlapping and partially
nested, so that we have actually only five (more or less) inde-
pendent models (those containing only one predictor: m2,
m3, m5, m9 and intercept-only m1). In real data sets, such
spreading of weight is the result of data sparseness or
extreme noise, making important effects stand out less;
indeed, half of our candidate models are not hugely differ-
ent, i.e., within DAIC < 4.

Case study 2: Real species presence–absence data, many data
points and a moderate number of predictors

In the second case study, we use data on the real distribu-
tion of short-finned eel (Anguilla australis) in New Zealand
(from Elith et al. 2008). The data are provided in the R pack-
age dismo, already split into a 1000-row training and a 500-
row test data set, and featuring 10 predictors. We ran four dif-
ferent model types (GAM, Random Forest [rF], artificial
neural network [ANN], support vector machine [SVM]) using
all 10 predictors, along with two variations of the GLM (best
models selected by AIC and BIC from the full model contain-
ing the 10 predictors, relevant quadratic terms and all first-
order interactions). For details, see Data S1.
The number of averaging approaches that can be used to

compute model weights is smaller than in the previous case
study, as three of the six models do not report a likelihood
or the number of parameters, precluding the use of
rjMCMC, Bayes factor, (W)AIC, BIC, and Mallows’ Cp.
Because we do not know the underlying data-generating
model, we evaluate the models on the randomly pre-selected
test data provided.
One interesting result is that model averaging was effec-

tively a model selection tool in several cases (Table 3).
Stacking, bootstrapping, JMA, and to a lesser degree mini-
mal variance, BMA-EM, and the model-based model com-
binations yielded non-zero weights for only one (or two)
models. Apparently, these approaches yielded suboptimal
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model weights, as these “model selection” outcomes of
model averaging fared worse than those that kept all models
in the set (equal weight, leave-one-out, and cos-squared).

Second, the best two model averaging algorithms in this
case study, apart from the median where varying weights are
used, identified an approximately equal weighting as

TABLE 2. Model weights (averaged across 100 repetitions) given to the 16 linear regression models of case study 1 by different weighting
methods (see Table 1 for abbreviations), arranged by increasing prediction error (last column, median across replications).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 RMSE

rjMCMC median 0.00 0.01 0.00 0.11 0.00 0.00 0.08 0.11 0.00 0.14 0.00 0.09 0.14 0.13 0.10 0.09 1.069
BIC 0.00 0.01 0.00 0.18 0.00 0.03 0.17 0.04 0.00 0.19 0.00 0.04 0.24 0.05 0.05 0.01 1.074
Median† – – – – – – – – – – – – – – – – 1.075
m10‡ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1.076
rjMCMC weights 0.00 0.01 0.00 0.11 0.00 0.00 0.08 0.11 0.00 0.14 0.00 0.09 0.14 0.13 0.10 0.09 1.076
Boot 0.00 0.01 0.00 0.15 0.00 0.04 0.17 0.03 0.00 0.16 0.00 0.08 0.22 0.04 0.07 0.03 1.076
AIC 0.00 0.00 0.00 0.13 0.00 0.02 0.13 0.08 0.00 0.14 0.00 0.08 0.18 0.09 0.09 0.05 1.077
WAIC 0.00 0.00 0.00 0.13 0.00 0.02 0.11 0.09 0.00 0.14 0.00 0.08 0.16 0.10 0.11 0.06 1.078
MMA 0.00 0.00 0.00 0.13 0.00 0.02 0.12 0.08 0.00 0.14 0.00 0.09 0.18 0.10 0.10 0.06 1.078
Stacking 0.00 0.07 0.02 0.08 0.04 0.06 0.13 0.07 0.04 0.06 0.06 0.07 0.11 0.07 0.08 0.04 1.079
JMA 0.00 0.01 0.00 0.16 0.00 0.05 0.22 0.01 0.00 0.19 0.03 0.01 0.29 0.02 0.02 0.00 1.079
Full‡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.086
BMA-EM 0.00 0.08 0.01 0.08 0.02 0.07 0.14 0.06 0.03 0.08 0.10 0.04 0.15 0.06 0.06 0.03 1.104
BayesFactor 0.07 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 1.109
Equal weight 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 1.110
LOO-CV (R2) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 1.110
LOO-CV (RMSE) 0.09 0.06 0.08 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 1.123
MBMC (LM)§ – – – – – – – – – – – – – – – – 1.135
MBMC (rF)§ – – – – – – – – – – – – – – – – 1.181
Minimal variance –1.15 0.42 0.19 0.00 0.64 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.208
Cos-squared 0.00 0.00 0.30 0.00 0.21 0.21 0.02 0.01 0.00 0.00 0.24 0.00 0.00 0.00 0.01 0.00 1.209

Notes: Only the best (m10) and the full model are shown from the 16 candidate models. LOO-CV, leave-one-out cross-validation using R2

or RMSE as measure of model performance. For code see case study 1 in Data SI.
†Weights not available, as different models contribute to the median at each replication.
‡Prediction from individual model.
§Weights are variable. LM and rF refer to a linear model and a Random Forest as supra-model, respectively.

TABLE 3. Model weights given to the six model types of case study 2 (GLM, GAM, Random Forest, artificial neural networks, and support
vector machine) by different weighting methods (see Table 1 for abbreviations), arranged by decreasing fit of the averaged predictions to
test data, assessed as log-likelihood (l) (last column). Hyphen indicates that this model was not considered by the MBMC algorithm.

Method GLMaic GLMbic GAM rF ANN SVM l

Median† (0.176) (0.216) (0.212) (0.162) (0.146) (0.088) �182.84
LOO-CV 0.168 0.168 0.166 0.169 0.165 0.164 �184.82
Equal weight 0.167 0.167 0.167 0.167 0.167 0.167 �184.86
Cos-squared 0.122 0.104 0.178 0.188 0.186 0.221 �185.02
BMA-EM 0.388 0.192 0.000 0.420 0.000 0.000 �185.24
Stacking 0.000 0.000 0.000 1.000 0.000 0.000 �186.82
Bootstrap 0.000 0.000 0.000 1.000 0.000 0.000 �186.83
Minimal variance 0.155 0.469 �0.036 0.58 �0.026 �0.141 �188.45
MBMC (GAM)§ – – * * – – �198.23
MBMC (rF)§ – – – – – – �200.20
JMA 0.000 0.000 0.000 0.000 0.000 1.000 �214.68
MBMC (GLM)§ � � * * � � �268.52
rF‡ 0 0 0 1 0 0 �186.83
GAM‡ 0 0 1 0 0 0 �193.40
ANN‡ 0 0 0 0 1 0 �194.28
GLMaic‡ 1 0 0 0 0 0 �197.48
GLMbic‡ 0 1 0 0 0 0 �197.73
SVM‡ 0 0 0 0 0 1 214.68

Notes: LOO-CV, leave-one-out cross-validation using R2 or RMSE as measure of model performance. For code, see case study 2 in Data S1.
†Weights are proportion of times this model was actually used to compute the median value divided by two. N dashes indicate that this

model was not considered by the MBMC algorithm.
‡Prediction from individual model.
§Weights are variable. Asterisk indicates that a model’s prediction was a significant term in the supra-model. GAM, rF and GLM refer to

three different types of supra-model: a generalized additive model, a Random Forest, and a generalized linear model.
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optimal strategy. That is somewhat surprising, given that
SVM performed relatively poorly (and was excluded by
BMA-EM, but favored by cos-squared as a more indepen-
dent contribution). The likely reason of high weights for the
poor SVM is that averaging-in less correlated predictions
reduces covariances in Eq. 5.
The good performance of the median in both case studies

suggests that using the central value of each prediction,
rather than give constant weights to the model itself, may be
even more effective in reducing variance and thus prediction
error. Further research is needed to clarify if this principle is
indeed valid across many applications.

RECOMMENDATIONS

In this review, we have firstly explained the mechanisms by
which model averaging can improve model predictions and,
second, we have discussed the large diversity of methods that
are available to compute averaging weights. While our general
results and outlook on this field are positive, in the sense that
model averaging is often useful, the complexity of the topic
prevents us from providing final answers about the best
approach for ecologists. Surprisingly many issues seem to be
statistically unresolved, or addressed by quick fixes and even
fundamental questions remain open, which we will discuss
next. It is unsatisfactory to see the large variance in weights
and performance of the different averaging approaches in our
case studies, but also the literature provides too few compar-
isons of model weights to provide robust advice. In general,
our recommendations are thus guided by reducing harm,
rather than suggesting an optimal solution.

Averaged prediction should be accompanied by uncertainty
estimates

Just like any other statistical approach, model averaging
can be used wrongly. Focusing entirely on the predictions,
rather than their uncertainty, can be misleading, Knutti et al.
(2010) showed this for combining precipitation predictions:
spatial heterogeneity cancelled out across models, giving the
erroneous impression of little change when in fact all models
predict large changes (albeit in different regions). Similarly,
King et al. (2008) found that averaging parameters from two
competing models led to no effect of two hypothesized
impacts, although in both models a (different) driver was very
influential. We thus strongly encourage including at least
model-averaged confidence intervals alongside any predic-
tion, possibly in addition to the individual model predictions,
to prevent erroneous interpretation of averaged predictions.
Also, more attention should be paid to the full model. It has
many desirable properties (unbiased parameter estimates,
very good coverage), but suffers from violation of the parsi-
mony principle (“Occam’s razor”) and requires more consid-
eration in which form covariates should be fit. Its larger
prediction error, compared to the over-optimistic single-best
partial model, is the reason for correct confidence intervals.

Dependencies among model predictions should be addressed

Statistical models, which aim to describe the data to which
they are fitted, will often have correlated parameters and fits;

process models may overlap in modelled processes. Having
highly similar models in the model set will inflate the cumula-
tive weight given to them (as illustrated in Appendix S1.6).
One way to handle inflation of weights by highly related
models is to assign prior model probabilities in a Bayesian
framework. Another approach would be to pre-select models
of different types (see next point). Alternatively, the cos-
square scheme of Garthwaite and Mubwandarikwa (2010)
uses the correlation matrix of model projections to appropri-
ately change weights of correlated models. Of the weighting
schemes considered here, it is the only approach doing so, but
it should be noted that the performance of this approach in
our case study was rather poor (Fig. 6, Tables 2 and 3).

Validation-based weighting or validation-based
pre-selection of models

Madigan and Raftery (1994), Draper (1995), Burnham
and Anderson (2002), and more recently Yuan and Yang
(2005) and Ghosh and Yuan (2009), have argued that only
“good” models should be averaged. Different ways of com-
bining model averaging with a model screening step have
been proposed (Augustin et al. 2005, Yuan and Yang 2005,
Ghosh and Yuan 2009), in which model selection precedes
averaging (pre-selection). This will happen implicitly, and in
a single step, if any of the model weight algorithms discussed
above attributes a weight of effectively zero to a model, as
happened in case study 2. How prevalent this effect is in real
world studies is unclear, as weights are rarely reported.
In contrast, some studies select models after the predictions

are made (e.g., Thuiller 2004, Forester et al. 2013). These stud-
ies have averaged either models that predict in the same direc-
tion (along the “consensus axis”; Grenouillet et al. 2010), or
the best 50% in the set (Marmion et al. 2009a), or however
many models one should combine to minimize prediction
error. Such approaches necessitate addressing the challenge of
using data twice (Lauzeral et al. 2015). Post-selection reduces
the ability of “dissenting voices” (i.e., less correlated predic-
tions) to reduce prediction error and instead reinforce the
trend of emphasizing the model type most represented in the
set. As a consequence, their uncertainty estimation will be
overly optimistic. We do not advocate their use.
We suggest to employ validation-based methods of model

averaging rather than relying on model-based estimates of
error. That is, we recommend (leave-one out) cross-valida-
tion and stacking rather than AIC (in line with recommen-
dations of Hooten and Hobbs 2015). Using (semi-)
independent test data gives us some capacity to estimate pre-
dictive bias. In such a setting, it may be less relevant whether
models are pre-selected by validation-based estimates of
error and then averaged with equal weights or weighted by
validation-based estimates of error without pre-selection.
For this to work, however, it is crucial that (cross)-validation
strategies are designed to ensure independence of the valida-
tion data, which is a non-trivial problem in many practical
ecological applications (Roberts et al. 2017).

Process models are no different

In fishery science, averaging process models is relatively
common (Brodziak and Piner 2010), as it is in weather and
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climate science (Krishnamurti et al. 1999, Knutti et al.
2010, Bauer et al. 2015). There are at least two connected
challenges such enterprises face: validation and weighting.
Often process models are tuned/calibrated on all sets of data
available, in the sensible attempt to describe all relevant pro-
cesses in the best possible way. That means, however, that no
independent validation data are available, so that we cannot
use the prediction accuracy of different models to compute
model weights. Consequently, all models receive the same
weight (e.g., in IPCC reports or for economic models), or
some reasonable but statistically ad-hoc construction of
weights is employed (e.g., Giorgi and Mearns 2002). In
recent years, hind-casting has gained in popularity, i.e., eval-
uating models by predicting to past data. This will only be a
useful approach if historic data were not already used to
derive or tune model parameters, and if hindcasting success
is related to prediction success (which it need not be, if pro-
cesses or drivers change).
Cross-validation is often infeasible for large models, as

run-times are prohibitively long. However, the greatest
obstacle to averaging process models is the absence of truly
equivalent alternative models, which predict the same state
variable. Fishery science is one of the few areas of ecology in
which commensurable models exist and are being averaged
in a variety of ways (e.g., Stanley and Burnham 1998,
Brodziak and Legault 2005, Brandon and Wade 2006,
Katsanevakis 2006, Hill et al. 2007, Katsanevakis and
Maravelias 2008, Hollowed et al. 2009, Jiao et al. 2009,
Brodziak and Piner 2010). Carbon and biomass assessments
are also moving in that direction (Hanson et al. 2004, Butler
et al. 2009, Wang et al. 2009, Picard et al. 2012). These
fields could profit from exploring averaging methods such as
minimal variance and cos-squared, which do not require
cross-validation and may perform better than either equal
weights or BMA-EM, and probably better than MBMC’s
potentially overfitted supra-models.
Finally, irrespective of the approach chosen, model averag-

ing studies should report model weights, and predictions
should be accompanied by estimates of prediction uncertainty.

Overall conclusion and recommendations

In conclusion, we find that:

1) Model averaging may, but need not necessarily reduce
prediction errors. Model averaging benefits generally
increase with decreasing covariance of the individual
model predictions and decreasing mean bias of the con-
tributing models. Moreover, while estimating model
weights allows reducing the weight of poor models, this
comes at the expense of introducing additional variance
in the average, reducing the benefits of model averaging.

2) There are currently no generally reliable analytical meth-
ods to calculate frequentist confidence intervals (or P-
values) on model-averaged predictions. Non-parametric
methods, however, such as cross-validation, remain reliable
for estimating predictive errors, and should therefore be
preferred for quantifying predictive uncertainties of model
averages. Bayesian credible intervals are in principle valid
as well, if the typical assumption for Bayesian model selec-
tion, that the true model is among the candidates, is met.

3) From general considerations, we believe that non-parametric
methods that directly target predictive error (e.g., cross-vali-
dation or stacking) are a robust and straightforward choice
for choosing weights. Parametric methods such as AIC, BIC
are faster, but may not always perform equally well. Cross-
validation can be used to test if fixed or estimated weights
perform better than the full or the best model.
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