
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: 0162-1459 (Print) 1537-274X (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

Prediction, Estimation, and Attribution

Bradley Efron

To cite this article: Bradley Efron (2020) Prediction, Estimation, and Attribution, Journal of the
American Statistical Association, 115:530, 636-655, DOI: 10.1080/01621459.2020.1762613

To link to this article:  https://doi.org/10.1080/01621459.2020.1762613

Published online: 04 Jun 2020.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2020.1762613
https://doi.org/10.1080/01621459.2020.1762613
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2020.1762613
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2020.1762613
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2020.1762613&domain=pdf&date_stamp=2020-06-04
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2020.1762613&domain=pdf&date_stamp=2020-06-04


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION

2020, VOL. 115, NO. 530, 636–655: Theory and Methods Discussion

https://doi.org/10.1080/01621459.2020.1762613

Prediction, Estimation, and Attribution

Bradley Efron

Department of Statistics, Stanford University, Stanford, CA

ABSTRACT

The scientific needs and computational limitations of the twentieth century fashioned classical statistical
methodology. Both theneeds and limitationshave changed in the twenty-first, and sohas themethodology.
Large-scale prediction algorithms—neural nets, deep learning, boosting, support vectormachines, random
forests—have achieved star status in the popular press. They are recognizable as heirs to the regression
tradition, but ones carried out at enormous scale and on titanic datasets. Howdo these algorithms compare
with standard regression techniques such as ordinary least squares or logistic regression? Several key
discrepancies will be examined, centering on the differences between prediction and estimation or pre-
diction and attribution (significance testing). Most of the discussion is carried out through small numerical
examples.
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1. Introduction

Statistical regression methods go back to Gauss and Legendre
in the early 1800s, and especially to Galton in 1877. During the
twentieth century, regression ideas were adapted to a variety
of important statistical tasks: the prediction of new cases, the
estimation of regression surfaces, and the assignment of signifi-
cance to individual predictors, what I have called “attribution”
in the title of this article. Many of the most powerful ideas
of twentieth century statistics are connected with regression:
least squares fitting, logistic regression, generalized linear mod-
els, ANOVA, predictor significance testing, regression to the
mean.

The twenty-first century has seen the rise of a new breed
of what can be called “pure prediction algorithms”—neural
nets, deep learning, boosting, support vector machines, ran-
dom forests—recognizably in the Gauss–Galton tradition, but
able to operate at immense scales, with millions of data points
and even more millions of predictor variables. Highly suc-
cessful at automating tasks like online shopping, machine
translation, and airline information, the algorithms (partic-
ularly deep learning) have become media darlings in their
own right, generating an immense rush of interest in the
business world. More recently, the rush has extended into
the world of science, a one-minute browser search pro-
ducing “deep learning in biology”; “computational linguis-
tics and deep learning”; and “deep learning for regulatory
genomics.”

How do the pure prediction algorithms relate to traditional
regression methods? That is the central question pursued in
what follows. A series of salient differences will be examined—
differences of assumption, scientific philosophy, and goals. The
story is a complicated one, with no clear winners or losers; but a
rough summary, at least in my mind, is that the pure prediction

CONTACT Bradley Efron efron@stanford.edu Department of Statistics, Stanford University, 390 Jane Stanford Way, Sequoia Hall, Stanford, CA 94305-4065.

Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.

algorithms are a powerful addition to the statistician’s armory,
yet substantial further development is needed for their routine
scientific applicability. Such development is going on already in
the statistical world, and has provided a welcome shot of energy
into our discipline.

This article, originally a talk, is written with a broad brush,
and is meant to be descriptive of current practice rather than
normative of how things have to be. No previous knowledge of
the various prediction algorithms is assumed, though that will
sorely underestimate many readers.

This is not a research paper, and most of the argumentation
is carried out through numerical examples. These are of small
size, even miniscule by current prediction standards. A certain
giganticism has gripped the prediction literature, with swelling
prefixes such as tera-, peta-, and exabestowing bragging rights.
But small datasets can be better for exposing the limitations of a
new methodology.

An excellent reference for prediction methods, both tradi-
tional and modern, is Hastie, Tibshirani, and Friedman (2009).
Very little will be said here about the mechanics of the pure
prediction algorithms: just enough, I hope, to get across the
idea of how radically different they are from their traditional
counterparts.

2. Surface Plus Noise Models

For both the prediction algorithms and traditional regression
methods, we will assume that the data d available to the statisti-
cian has this structure:

d = {(xi, yi), i = 1, 2, . . . , n}; (1)

here xi is a p-dimensional vector of predictors taking its value
in a known space X contained in R

p, and yi is a real-valued

© 2020 American Statistical Association
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Figure 1. Black curve is OLS fitted regression to cholostyramine data (dots); vertical bars indicate± one standard error estimation.

response. The n pairs are assumed to be independent of each
other. More concisely we can write

d = {x, y}, (2)

where x is the n × p matrix having xti as its ith row, and
y = (y1, y2, . . . , yn)

t . Perhaps the most traditional of traditional
regression models is

yi = xtiβ + ǫi (i = 1, 2, . . . , n), (3)

ǫi
iid∼ N (0, σ 2), that is, “ordinary least squares with normal

errors.” Here, β is an unknown p-dimensional parameter vector.
In matrix notation,

y = xβ + ǫ. (4)

For any choice of x in X , model (3) says that the response y
has expectation μ = xtβ , so y ∼ N (μ, σ 2). The linear surface
Sβ ,

Sβ = {μ = xtβ , x ∈ X }, (5)

contains all the true expectations, but the truth is blurred by the
noise terms ǫi.

More generally, we might expand (3) to

yi = s(xi,β) + ǫi (i = 1, 2, . . . , n), (6)

where s(x,β) is some known functional form that, for any fixed
value of β , gives expectation μ = s(x,β) as a function of x ∈
X . Now the surface of true expectations, that is, the regression
surface, is

Sβ = {μ = s(x,β), x ∈ X }. (7)

Most traditional regression methods depend on some sort of
surface plus noise formulation (though “plus” may refer to, say,
binomial variability). The surface describes the scientific truths
we wish to learn, but we can only observe points on the surface
obscured by noise. The statistician’s traditional estimation task

is to learn as much as possible about the surface from the
data d.

Figure 1 shows a small example, taken from a larger dataset in
Efron andFeldman (1991):n = 164male doctors volunteered to
take the cholesterol-lowering drug cholostyramine. Two num-
bers were recorded for each doctor,

xi = normalized compliance and

yi = observed cholesterol decrease. (8)

Compliance, the proportion of the intended dose actually taken,
ranged from 0% to 100%, –2.25 to 1.97 on the normalized scale,
and of course it was hoped to see larger cholesterol decreases for
the better compliers.

A normal regression model (6) was fit, with

s(xi,β) = β0 + β1xi + β2x
2
i + β3x

3
i , (9)

in other words, a cubic regression model. The black curve is the
estimated surface

Ŝ =
{
s
(
x, β̂

)
for x ∈ X

}
, (10)

fit by maximum likelihood or, equivalently, by ordinary least
squares (OLS). The vertical bars indicate ± one standard error
for the estimated values s(x, β̂), at 11 choices of x, showing how
inaccurate Ŝ might be as an estimate of the true S .

That is the estimation side of the story. As far as attribution

is concerned, only β̂0 and β̂1 were significantly nonzero. The
adjusted R2 was 0.482, a traditional measure of the model’s
predictive power.

Another mainstay of traditional methodology is logistic
regression. Table 1 concerns the neonate data (Mediratta et al.
2019): n = 812 very sick babies at an African facility were
observed over the course of one year, 605who lived and 207who
died. Eleven covariates were measured at entry: gestational age,
body weight, Apgar score, etc., so xi in (1) was 11-dimensional,
while yi equaled 0 or 1 as the baby lived or died. This is a surface
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Figure 2. On left, a surface depicting Newton’s second law of motion, acceleration= force/mass; on right, a noisy version.

Table 1. Logistic regression analysis of neonate data.

Estimate SE p-value

Intercept −1.549 0.457 0.001∗∗∗
gest −0.474 0.163 0.004∗∗
ap −0.583 0.110 0.000∗∗∗
bwei −0.488 0.163 0.003∗∗
resp 0.784 0.140 0.000∗∗∗
cpap 0.271 0.122 0.027∗
ment 1.105 0.271 0.000∗∗∗
rate −0.089 0.176 0.612
hr 0.013 0.108 0.905
head 0.103 0.111 0.355
gen −0.001 0.109 0.994
temp 0.015 0.124 0.905

NOTE: Significant two-sided p-values indicated for 6 of 11 predictors; estimated
logistic regression made 18% prediction errors.

plus noise model, with a linear logistic surface and Bernoulli
noise.

The 11 predictor variables were standardized to have mean
0 and variance 1, after which logistic regression analysis was
carried out. Table 1 shows some of the output. Columns 1 and 2
give estimates and standard errors for the regression coefficients
(which amount to a description of the estimated linear logistic
surface Ŝ and its accuracy).

Column 3 shows standard two-sided p-values for the 11 vari-
ables, 6 of which are significantly nonzero, 5 of them strongly so.
This is the attribution part of the analysis. As far as prediction is
concerned, the fitted logistic regressionmodel gave an estimated
probability pi of death for each baby. The prediction rule

pi > 0.25 dies
if predict

pi ≤ 0.25 lives
(11)

had an empirical error rate of 18%. (Threshold 0.25 was chosen
to compensate for the smaller proportion of deaths.)

All of this is familiar stuff, serving here as a reminder of how
traditional regression analyses typically begin: a description of
the underlying scientific truth (the “surface”) is formulated,
along with a model of the errors that obscure direct observa-
tion. The pure prediction algorithms follow a different path, as
described in Section 3.

The left panel of Figure 2 shows the surface representation of
a scientific icon, Newton’s second law of motion,

acceleration = force

mass
. (12)

It is pleasing to imagine the second law falling full-born out of
Newton’s head, but he was a master of experimentation. The
right panel shows a (fanciful) picture of what experimental data
might have looked like.1

In the absence of genius-level insight, statistical estimation
theory is intended as an instrument for peering through the
noisy data and discerning a smooth underlying truth. Neither
the cholostyramine nor the neonate examples is as fundamental
as Newton’s second law but they share the goal of extracting
dependable scientific structure in a noisy environment. The
noise is ephemeral but the structure, hopefully, is eternal, or at
least long-lasting (see Section 8).

3. The Pure Prediction Algorithms

The twenty-first century2 has seen the rise of an extraordinary
collection of prediction algorithms: random forests, gradient
boosting, support vector machines, neural nets (including deep
learning), and others. I will refer to these collectively as the
“pure prediction algorithms” to differentiate them from the tra-
ditional prediction methods illustrated in the previous section.
Some spectacular successes—machine translation, iPhone’s Siri,
facial recognition, championship chess, and Go programs—
have elicited a tsunami of public interest. If media attention is
the appropriate metric, then the pure prediction algorithms are
our era’s statistical stars.

The adjective “pure” is justified by the algorithms’ focus
on prediction, to the neglect of estimation and attribution.
Their basic strategy is simple: to go directly for high predictive
accuracy and not worry about surface plus noise models. This
has some striking advantages and some drawbacks, too. Both
advantages and drawbacks will be illustrated in what follows.

A prediction algorithm is a general program for inputting a
dataset d = {(xi, yi), i = 1, 2, . . . , n} (1) and outputting a rule

1A half-century earlier, Galileo famously used inclined planes and a water
clock to estimate the acceleration of falling objects.

2Actually, the “long twenty-first century,” much of the activity beginning in
the 1990s.
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Figure 3. Classification tree for neonate data. Triangled terminal nodes predict baby lives, circled predict baby dies; the rule has apparent prediction error rate 17% and
cross-validated rate 18%.

f (x, d) that, for any predictor vector x, yields a prediction

ŷ = f (x, d). (13)

We hope that the apparent error rate of the rule, for classification
problems the proportion of cases where ŷi �= yi,

êrr = #{f (xi, d) �= yi}/n (14)

is small. More crucially, we hope that the true error rate

Err = E{f (X, d) �= Y} (15)

is small, where (X,Y) is a random draw from whatever prob-
ability distribution gave the (xi, yi) pairs in d; see Section 6.
Random forests, boosting, deep learning, etc. are algorithms that
have well-earned reputations for giving small values of Err in
complicated situations.

Besides being very different from traditional prediction
methods, the pure prediction algorithms are very different from
each other. The least intricate and easiest to describe is random
forests (Breiman 2001). For dichotomous prediction problems,
like that for the neonate babies, random forests depends on
ensembles of classification trees.

Figure 3 shows a single classification tree obtained by apply-
ing the R program Rpart33 to the neonates. At the top of the
tree all 812 babies were divided into two groups: those with cpap
(an airway blockage signifier) less than threshold 0.6654 were
put into the more-favorable prognosis group to the left; those
with cpap ≥ 0.6654 were shunted right into the less-favorable
prognosis group. The predictor cpap and threshold 0.6654 were
chosen to maximize, among all possible (predictor, threshold)
choices, the difference in observed death rates between the

3A knockoff of CART (Breiman et al. 1984).

two groups.4 Next, each of the two groups was itself split in
two, following the same Gini criterion. The splitting process
continued until certain stopping rules were invoked, involving
very small or very homogeneous groups.

At the bottom of Figure 3, the splitting process ended at eight
terminal nodes: the node at far left contained 412 of the original
812 babies, only 5% of which were deaths; the far right node
contained 41 babies, all of which were deaths. Triangles indicate
the three terminal nodes having death proportions less than the
original proportion 25.5%, while circles indicate proportions
exceeding 25.5%. The prediction rule is “lives” at triangles, “dies”
at circles. If a new baby arrived at the facility with vector x of
11 measurements, the doctors could predict life or death by
following x down the tree to termination.

This prediction rule has apparent error rate 17%, taking the
observed node proportions, 0.05, etc., as true. Classification
trees have a reputation for being greedy overfitters, but in this
case a 10-fold cross-validation analysis gave error rate 18%,
nearly the same. The careful “traditional” analysis of the neonate
data in Mediratta et al. (2019) gave a cross-validated error rate
of 20%. It is worth noting that the splitting variables in Figure 3
agree nicely with those found significant in Table 1.

So far so good for regression trees, but with larger exam-
ples they have earned a reputation for poor predictive perfor-
mance; see Section 9.2 of Breiman (2001). As an improvement,
Breiman’s random forest algorithm relies on averaging a large
number of bootstrap trees, each generated as follows:

4More precisely: if nL and nR are the numbers in the left and right groups, and
p̂L and p̂R the proportions of deaths, then the algorithmminimized theGini
criterion nLp̂L(1−p̂L)+nRp̂R(1−p̂R). This equals np̂(1−p̂)−(nLnR/n)(p̂L−
p̂R)

2 , wheren = nL+nR and p̂ = (nLp̂L+nRp̂R)/n, so thatminimizingGini’s

criterion is equivalent to maximizing (p̂L − p̂R)
2, for any given values of nL

and nR .
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Figure 4. Random forest prediction error rate for neonate data, as a function of number of bootstrapped trees; it has cross-validated error rate 17%.

1. Draw a nonparametric bootstrap sample d∗ from the original
data d, that is, a random sample of n pairs (xi, yi) chosenwith
replacement from d.

2. Construct a classification tree from d∗ as before, but choose
each split using only a random subset of p∗ predictors chosen
independently from the original p(p∗ .= √

p).

Having generated, say, B such classification trees, a newly
observed x is classified by following it down to termination in
each tree; finally, ŷ = f (x, d) is determined by the majority of
the B votes. Typically, B is taken in the range 100–1000.

Random forests was applied to the neonate prediction prob-
lem, using the R program randomForest, with the results
graphed in Figure 4. The prediction error rate5 is shown as
a function of the number of bootstrap trees sampled. In all,
B = 501 trees were used but there was not much change after
200. The overall prediction error rate fluctuated around 17%,
only a small improvement over the 18% cross-validated rate in
Figure 3. Random forests is shown to better advantage in the
microarray example of Section 4.

Random forests begins with the p columns of x as predic-
tors, but then coins a host of new predictors via the splitting
process (e.g., “cpap less than or greater than 0.6654”). The new
variables bring a high degree of interaction to the analysis, for
instance, between cpap and gest in Figure 3. Though carried out
differently, high interactivity and fecund coinage of predictor
variables are hallmarks of all pure prediction algorithms.

4. AMicroarray Prediction Problem

Newsworthy breakthroughs for pure prediction algorithms have
involved truly enormous datasets. The original English/French
translator tool on Google, for instance, was trained on millions
of parallel snippets of English and French obtained from Cana-
dian and European Union legislative records. There is nothing
of that size to offer here but, as a small step up from the neonate
data, we will consider a microarray study of prostate cancer.

5These are “out-of-bag” estimates of prediction error, a form of cross-
validation explained in Appendix A.

Table 2. Number of random forest test set errors in 100 random training/test splits
of prostate data.

Errors 0 1 2 3 4 5 7
Frequency 3 26 39 12 5 4 1

The study involved n = 102 men, 52 cancer patients and
50 normal controls. Each man’s genetic expression levels were
measured on a panel of p = 6033 genes,

xij = activity of jth gene for ith man, (16)

i = 1, 2, . . . , 102 and j = 1, 2, . . . , 6033. The n × p matrix x

is much wider than it is tall in this case, “wide data” being the
trendy name for p ≫ n situations, as contrasted with the p ≪ n
“tall” datasets traditionally favored.

Random forests was put to the task of predicting normal
or cancer from a man’s microarray measurements. Following
standard procedure, the 102 men were randomly divided into
training and test sets of size 51,6 each having 25 normal controls
and 26 cancer patients.

The training data dtrain consists of 51 (x, y) pairs, x a vector of
p = 6033 genetic activity measurements and y equal 0 or 1 indi-
cating a normal or cancer patient. R program randomForest

yielded prediction rule f (x, dtrain). This rule was applied to the
test set, yielding predictions ŷi = f (xi, dtrain) for the 51 test
subjects.

Figure 5 graphs the test set error rate as the number of
random forest trees increased. After 100 trees, the test set error
rate was 2%. That is, ŷi agreed with yi, the actual outcome, for 50
of the 51 test set subjects: an excellent performance by anyone’s
standards! Thiswas not a particularly lucky result. Subsequently,
random training/test set splits were carried out 100 times, each
time repeating the random forest calculations in Figure 5 and
counting the number of test set errors. The modal number
of errors was 2, as seen in Table 2, with “1 prediction error”
occurring frequently.

6It would bemore common to choose, say, 81 training and 21 test, but for the
comparisons that follow it will be helpful to have larger test sets.
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Figure 5. Test set error rate for random forests applied to prostate cancer microarray study, as a function of number of bootstrap trees.
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Figure 6. Test set error for boosting algorithm gbm applied to prostate cancer data. Thin curve is training set error, which went to zero at step 86.

A classification tree can be thought of as a function f (x)
taking values 0 or 1 for x in its sample space X . The tree in
Figure 3 partitions the 11-dimensional space X into 8 rectan-
gular regions, three of which having y = 0 and five having
y = 1. A simpler function is obtained by stopping the division
process after the first split, in which case X is divided into just
two regions, cpap< 0.6654 and cpap≥ 0.6654. Such simple trees
are picturesquely known as “stumps.”

This brings up another prominent pure prediction method,
boosting. Figure 6 shows the results of applying the R program
gbm (for gradient boosting modeling) to the prostate cancer
prediction problem.7 Gbm sequentially fits a weighted sum of

7Applied with d = 1, that is, fitting stumps, and shrinkage factor 0.1.

classification trees,

K∑

k=1

wkfk(x), (17)

at step k + 1 choosing tree fk+1(x) to best improve the fit.
The weights wk are kept small to avoid getting trapped in a
bad sequence. After 400 steps, Figure 6 shows a test sample
error of 4%, that is, two mistakes out of 51; once again, an
impressive performance. (The examples in Hastie, Tibshirani,
and Friedman (2009) show gbmusually doing a little better than
random forests.)

In the evocative language of boosting, the stumps going into
Figure 6’s construction are called “weak learners”: any one of
them by itself would barely lower prediction errors below 50%.
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That a myriad of weak learners can combine so effectively is
a happy surprise and a central advance of the pure prediction
enterprise. In contrast, traditional methods focus on strong
individual predictors, as with the asterisks in Table 1, a key
difference to be discussed in subsequent sections.

The light curve in Figure 6 traces the gbm rule’s error rate
on its own training set. It went to zero at step 86 but training
continued on, with some improvement in test error. Cross-
validation calculations give some hint of when to stop the fitting
process—here we would have done better to stop at step 200—
but it’s not a settled question.

The umbrella package keras was used to apply neural
nets/deep learning to the prostate data. Results were poorer than
for random forests or gbm: 7 or 8 errors on the test set depending
on the exact stopping rule. A support vector machine algorithm
did worse still, with 11 test set errors.

The deep learning algorithm is much more intricate than
the others, reporting “780,736 parameters used,” these being
internally adjusted tuning parameters set by cross-validation.
That this is possible at all is a tribute to modern computing
power, the underlying enabler of the pure predictionmovement.

5. Advantages and Disadvantages of Prediction

For those of us who have struggled to find “significant” genes in
a microarray study,8 the almost perfect prostate cancer predic-
tions of random forests and gbmhave to come as a disconcerting
surprise. Without discounting the surprise, or the ingenuity of
the prediction algorithms, a contributing factor might be that
prediction is an easier task than either attribution or estimation.
This is a difficult suspicion to support in general, but a couple of
examples help make the point.

Regarding estimation, suppose that we observe 25 indepen-
dent replications from a normal distribution with unknown
expectation μ,

x1, x2, . . . , x25
ind∼ N (μ, 1), (18)

and consider estimating μ with either the sample mean x̄ or the
samplemedian x̆. As far as squared error is concerned, themean
is an overwhelming winner, being more than half again more
efficient,

E{(x̆ − μ)2}/E{(x̄ − μ)2} .= 1.57. (19)

Suppose instead that the task is to predict the value of a new,
independent realization X ∼ N (μ, 1). The mean still wins, but
now by only 2%,

E{(X − x̆)2}/E{(X − x̄)2} = 1.02. (20)

The reason, of course, is that most of the prediction error comes
from the variability of X, which neither x̄ nor x̆ can cure.9

Prediction is easier than estimation, at least in the sense
of being more forgiving. This allows for the use of inefficient

8See Figure 15.5 of Efron and Hastie (2016).
9This imagines that we have a single new observation to predict. Suppose

instead that we have m new observations X1 , X2 , . . . , Xm
ind∼ N (μ, 1), and

that we wish to predict their mean X̄ . With m = 10 the efficiency ratio is

E{(X̄− x̆)2}/E{(X̄− x̄)2} = 1.16; withm = 100, 1.46; andwithm = ∞, 1.57.
One can think of estimation as the prediction of future mean values.

estimators like the gbm stumps, that are convenient for mass
deployment. The pure prediction algorithms operate nonpara-
metrically, a side benefit of not having to worry much about
estimation efficiency.

For the comparison of prediction with attribution we con-
sider an idealized version of a microarray study involving n
subjects, n/2 healthy controls and n/2 sick patients: any one
subject provides a vector of measurements on N genes, X =
(X1,X2, . . . ,XN)t , with

Xj
ind∼ N (±δj/2c, 1)

(
c =

√
n/4

)
, (21)

for j = 1, 2, . . . ,N , “plus” for the sick and “minus” for the
healthy; δj is the effect size for gene j. Most of the genes are null,
δj = 0, say N0 of them, but a small number N1 have δj equal a
positive value �,

N0 : δj = 0 and N1 : δj = �. (22)

A new person arrives and produces a microarray of mea-
surements X = (X1,X2, . . . ,XN)t satisfying (21) but without
us knowing the person’s healthy/sick status; that is, without
knowledge of the ± value. Question: How small can N1/N0 get
before prediction becomes impossible? The answer, motivated
in Appendix A, is that asymptotically as N0 → ∞, accurate
prediction is possible if

N1 = O(N
1/2
0 ), (23)

but not below that.
By contrast, Appendix A shows that effective attribution

requires

N1 = O(N0). (24)

In terms of “needles in haystacks” (Johnstone and Silverman
2004), attribution needs an order of magnitude more needles
than prediction. The prediction tactic of combining weak learn-
ers is not available for attribution, which, almost by definition, is
looking for strong individual predictors. At least in this example,
it seems fair to say that prediction is much easier than attribu-
tion.

The three main regression categories can usefully be
arranged in order

prediction · · · estimation · · · attribution, (25)

with estimation in a central position and prediction and attribu-
tion more remote from each other. Traditionally, estimation is
linked to attribution through p-values and confidence intervals,
as in Table 1. Looking in the other direction, good estimators,
when they are available, are usually good predictors. Both pre-
diction and estimation focus their output on the n side of the
n×pmatrix x, while attribution focuses on the p side. Estimation
faces both ways in (25).

The randomForest algorithm does attempt to connect
prediction and attribution. Along with the predictions, an
importance measure10 is computed for each of the p predictor

10There are several such measures. The one in Figure 7 relates to Gini’s
criterion, Section 3. At the conclusion of the algorithmwehave a long list of
all the splits in all the bootstrap trees; a single predictor’s importance score
is the sum of the decreases in the Gini criterion over all splits where that
predictor was the splitting variable.
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Figure 7. Random forest importance measures for prostate cancer prediction rule of Figure 5, plotted in order of declining importance.

Table 3. Number of test set errors for prostate cancer random forest predictions,
removing top predictors shown in Figure 7.

# removed 0 1 5 10 20 40 80 160 348
# errors 1 0 3 1 1 2 2 2 0

variables. Figure 7 shows the ordered importance scores for
the prostate cancer application of Figure 5. Of the p = 6033
genes, 348 had positive scores, these being the genes that ever
were chosen as splitting variables. Gene 1031 achieved the most
importance, with about 25 others above the sharp bend in
the importance curve. Can we use the importance scores for
attribution, as with the asterisks in Table 1?

In this case, the answer seems to be no. I removed gene 1031
from the dataset, reducing the data matrix x to 102 × 6032,
and reran the randomForest prediction algorithm. Now the
number of test set prediction errors was zero. Removing the
most important five genes, the most important 10, . . . , the most
important 348 genes had similarly minor effects on the number
of test set prediction errors, as shown in Table 3.

At the final step, all of the genes involved in constructing
the original prediction rule of Figure 5 had been removed. Now
x was 102 × 5685, but the random forest rule based on the
reduced dataset d = {x, y} still gave excellent predictions. As
a matter of fact, there were zero test set errors for the realization
shown inTable 3. The prediction rule at the final step yielded 364
“important” genes, disjoint from the original 348. Removing all
712 = 348 + 364 genes from the prediction set—so now x was
102×5321—still gave a random forest prediction rule thatmade
only one test set error.

The “weak learners” model of prediction seems dominant
in this example. Evidently there are a great many genes weakly
correlated with prostate cancer, which can be combined in dif-
ferent combinations to give near-perfect predictions. This is an
advantage if prediction is the only goal, but a disadvantage as far
as attribution is concerned. Traditional methods of attribution

operate differently, striving as in Table 1 to identify a small set
of causal covariates (even if strict causality cannot be inferred).

The pure prediction algorithms’ penchant for coining weakly
correlated new predictors moves them in the opposite direc-
tion from attribution. Section 9 addresses sparsity—a working
assumption of there being only a few important predictors—
which is not at all the message conveyed by Table 3.

6. The Training/Test Set Paradigm

A crucial ingredient of modern prediction methodology is the
training/test set paradigm: the data d (1) is partitioned into a
training set dtrain and a test set dtest; a prediction rule f (x, dtrain)
is computed using only the data dtrain; finally, f (x, dtrain) is
applied to the cases in dtest, yielding an honest estimate of the
rule’s error rate. But honest does not mean perfect.

This paradigm was carried out in Section 4 for the prostate
cancer microarray study, producing an impressively small error
rate estimate of 2% for random forests.11 This seemed extraor-
dinary to me. Why not use this rule to diagnose prostate cancer
based on the vector of a new man’s 6033 gene expression mea-
surements? The next example suggests how thismight gowrong.

The training and test sets for the prostate cancer data of
Section 4 were obtained by randomly dividing the 102 men into
two sets of 51, each with 25 normal controls and 26 cancer
patients. Randomization is emphasized in the literature as a
guard against bias. Violating this advice, I repeated the analysis,
this time selecting for the training set the 25 normal controls
and 26 cancer patients with the lowest ID numbers. The test set
was the remaining 51 subjects, those with the highest IDs, and
again contained 25 normal controls and 26 cancer patients.

In the reanalysis randomForest did not perform nearly
as well as in Figure 5: f (x, dtrain) made 12 wrong predictions

11Taking account of the information in Table 2, a better error rate estimate is
3.7%.
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Figure 8. randomForest test set error for prostate cancer microarray study, now with training/test sets determined by early/late ID number. Results are much worse
than in Figure 5.
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Figure 9. gbm test set error, early/late division; compare with Figure 6. Going on to 800 trees decreased error estimate to 26%. Training set error rate, thin curve, was zero
after step 70 but test error rate continued to decline. See the brief discussion in Criterion 5 of Section 8.

on dtest with error rate 24%, rather than the previous 2%, as
graphed in Figure 8. The boosting algorithm gbm was just as
bad, producing prediction error rate 28% (14 wrong predic-
tions) as shown in Figure 9.

Why are the predictions somuchworse now? It is not obvious
from inspection but the prostate study subjects might have
been collected in the order listed,12 with some small method-
ological differences creeping in as time progressed. Perhaps all
those weak learners going into randomForest and gbmwere

12A singular value decomposition of the normal-subject data had second
principal vector sloping upward with ID number, but this was not true for
the cancer patient data.

vulnerable to such differences. The prediction literature uses
concept drift as a label for this kind of trouble, a notorious
example being the Google flu predictor, which beat the CDC for
a few years before failing spectacularly.13 Choosing one’s test set
by random selection sounds prudent but it is guaranteed to hide
any drift effects.

Concept drift gets us into the question of what our various
regression methods, new and old, are supposed to be telling
us. Science, historically, has been the search for the underlying
truths that govern our universe: truths that are supposed to be

13The CDC itself now sponsors annual Internet-based flu forecasting chal-
lenges (Schmidt 2019); see their past results at predict.cdc.gov.

predict.cdc.gov
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Figure 10. Black line segments indicate active episodes in the hypothetical microarray study. (Matrix transposed for typographical convenience.)

Table 4. Comparing logistic regression coefficients for neonate data for year 1 (as in Table 1) and year 2; correlation coefficient 0.79.

gest ap bwei resp cpap ment rate hr head gen temp

Year 1 −0.47 −0.58 −0.49 0.78 0.27 1.10 −0.09 0.01 0.1 0.00 0.02
Year 2 −0.65 −0.27 −0.19 1.13 0.15 0.41 −0.47 −0.02 −0.2 −0.04 0.16

eternal, like Newton’s laws. The eternal part is clear enough in
physics and astronomy—the speed of light, E = mc2, Hubble’s
law—and perhaps in medicine and biology, too, for example,
DNA and the circulation of blood. But modern science has
moved on to fields where truth may be more contingent, such
as economics, sociology, and ecology.

Without holding oneself to Newtonian standards, traditional
estimation and attribution usually aim for long-lasting results
that transcend the immediate datasets. In the surface plus noise
paradigm of Section 2, the surface plays the role of truth—at
least eternal enough to justify striving for its closest possible
estimation.

In the neonate example of Table 1 we would hope that
starred predictors like gest and ap would continue to show
up as important in future studies. A second year of data was
in fact obtained, but with only n = 246 babies. The same
logistic regression model was run for the year 2 data and
yielded coefficient estimates reasonably similar to the year 1
values; see Table 4. Newton would not be jealous, but some-
thing of more than immediate interest seems to have been
discovered.

Nothing rules out eternal truth-seeking for the pure pre-
diction algorithms, but they have been most famously applied
to more ephemeral phenomena: credit scores, Netflix movie
recommendations, facial recognition, Jeopardy! competitions.
The ability to extract information from large heterogeneous data
collections, even if just for short-term use, is a great advantage
of the prediction algorithms. Random selection of the test set
makes sense in this setting, as long as one does not accept the
estimated error rate as applying too far outside the limited range
of the current data.

Here is a contrived microarray example where all the pre-
dictors are ephemeral: n = 400 subjects participate in the
study, arriving one per day in alternation between Treatment
and Control; each subject is measured on a microarray of p =
200 genes. The 400×200 datamatrix x has independent normal
entries

xij
ind∼ N (μij, 1) for i = 1, 2, . . . , 400 and

j = 1, 2, . . . , 200. (26)

Most of the μij are null, μij = 0, but occasionally a gene will
have an active episode of 30 days during which

μij = 2 for Treatment and − 2 for Control (27)

for the entire episode, or

μij = 2 for Control and − 2 for Treatment (28)

for the entire episode. The choice between (27) and (28) is
random, as is the starting date for each episode. Each gene has
expected number of episodes equal 1. The black line segments
in Figure 10 indicate all the active time periods.

The 400 hypothetical subjects were randomly divided into
a training set of 320 and a test set of 80. A randomForest

analysis gave the results seen in the left panel of Figure 11, with
test set error rate 19%. A second randomForest analysis was
carried out, using the subjects fromdays 1 to 320 for the training
set and from days 321 to 400 for the test set. The right panel of
Figure 11 now shows test set error about 45%.

In this case, it is easy to see how things go wrong. From
any one day’s measurements it is possible to predict Treatment
or Control from the active episode responses on nearby days
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Figure 11. randomForest prediction applied to contrivedmicroarray study pictured in Figure 10. Left panel: Test set of size 80, selected randomly from400 days; heavy
black curve shows final estimated test error rate of 19%. Right panel: Test set days 321–400; now error rate estimate is 45%. Light dotted curves in both panels are training
set errors.

(even without knowledge of the activity map in Figure 10). This
works for the random training/test division, where most of the
test days will be intermixed with training days. Not so for the
early/late division, where most of the test days are far removed
from training set episodes. To put it another way, prediction is
easier for interpolation than extrapolation.14

What in general can we expect to learn from training/test
set error estimates? Going back to formulation (1), the usual
assumption is that the pairs (xi, yi) are independent and iden-
tically distributed (iid) from some probability distribution F on
(p + 1)-dimensional space,

(xi, yi)
iid∼ F for i = 1, 2, . . . , n. (29)

A training set d0 of size n0 and a test set d1 of size n1 = n−n0
are chosen (how is irrelevant under model (29)), rule f (x, d0) is
computed and applied to d1, generating an error estimate

Êrrn0 = 1

n1

∑

d1

L(yi, f (xi, d0)), (30)

L some loss function like squared error or counting error. Then,
under model (29), Êrrn0 is an unbiased estimate of

Errn0(F) = EF
{
Êrrn0

}
, (31)

the average prediction error of a rule15 f (x, d0) formed from n0
draws from F.

Concept drift can be interpreted as a change in the data-
generating mechanism (29), say F changing to some new dis-
tribution F̃, as seems the likely culprit in the prostate cancer
example of Figures 8 and 9.16 Traditional prediction methods

14Yu and Kumbier (2019) proposed the useful distinction of “internal testing”
versus “external testing.”

15An important point is that “a rule” means one formed according to the
algorithm of interest and the data-generating mechanism, not the specific
rule f (x,d0) at hand; see Figure 12.3 of Efron and Hastie (2016).

16Cox, in his discussion of Breiman (2001), says of the applicability of model
(29): “However, much prediction is not like this. Often the prediction is
under quite different …conditions …[for example] what would be the
effect on annual incidence of cancer in the United States of reducing by
10% the medical use of x-rays? etc.”

are also vulnerable to such changes. In the neonate study, the
logistic regression rule based on the year 1 data had a cross-
validated error rate of 20%which increased to 22%when applied
to the year 2 data.

The story is more complicated for the contrived example of
Figures 10 and 11, where model (29) does not strictly apply.
There the effective predictor variables are ephemeral, blooming
and fading over short time periods. A reasonable conjecture
(but no more than that) would say the weak learners of the
pure prediction algorithms are prone to ephemerality, or at
least are more prone than the “main effects” kind of predictors
favored in traditional methodology. Whether or not this is true,
I feel there is some danger in constructing training/test sets by
random selection, and that their error estimates must be taken
with a grain of statistical salt. To put things operationally, I’d
worry about recommending the random forests prediction rule
in Figure 5 to a friend concerned about prostate cancer.

This is more than a hypothetical concern. In their 2019
article, “Deep Neural Networks are Superior to Dermatologists
in Melanoma Image Classification,” Brinker et al. demonstrate
just what the title says; the authors are justifiably cautious,
recommending future studies for validation. Moreover, they
acknowledge the limitations of using a randomly selected test
set, along with the possible ephemerality of some of the algo-
rithm’s predictor variables. Frequent updating would be nec-
essary for serious use of any such diagnostic algorithm, along
with studies to show that certain subpopulations were not being
misdiagnosed.17

7. Smoothness

It was not just a happy coincidence that Newton’s calculus
accompanied Newton’s laws of motion. The Newtonian world,
as fleshed out by Laplace, is an infinitely smooth one in which

17Facial recognition algorithmshavebeen shown topossess gender, age, and
race biases.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 647

�

�

��

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

�

�

�
�

�

�
��

�

�

�

�

−2 −1 0 1 2

−
2

0
0

2
0

4
0

6
0

8
0

randomForest

normalized compliance

c
h

o
le

s
te

ro
l 
d

e
c
re

a
s
e

−2 −1 0 1 2

0
2
0

4
0

6
0

8
0

Boosting algorithm gbm

normalized compliance

c
h

o
le

s
te

ro
l 
re

d
u

c
ti
o

n

�
�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�
�

�

�

�

�

�
�
�

�

�

��
�

�
��

�

��

�

���

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

��

�

��

�

�

�

�

�

�

�

�

��

�

�

��
�

�

�
�

�

��

�

�

�
�
�

�

��

�

�

�

�

�

�

�

��

�

�

���

�

�

��

�

�

��

�

Figure 12. randomForest and gbm fits to the cholostyramine data of Figure 1 in Section 2. Heavy curve is cubic OLS; dashed curve in right panel is 8th degree OLS fit.

small changes in cause yield small changes in effect; a world
where derivatives ofmany ordersmake physical sense. The para-
metric models of traditional statistical methodology enforce the
smooth-world paradigm. Looking back at Figure 1 in Section 2,
we might not agree with the exact shape of the cholostyramine
cubic regression curve but the smoothness of the response seems
unarguable: going from, say, 1 to 1.01 on the compliance scale
should not much change the predicted cholesterol decrease.

Smoothness of response is not built into the pure pre-
diction algorithms. The left panel of Figure 12 shows a
randomForest estimate of cholesterol decrease as a function
of normalized compliance. It roughly follows the OLS cubic
curve but in a jagged, definitely unsmooth fashion. Algorithm
gbm, in the right panel, gave a less jagged “curve” but still with
substantial local discontinuity.

The choice of cubic in Figure 1 was made on the basis of a Cp
comparison of polynomial regressions degrees 1 through 8, with
cubic best. Both randomForest and gbm in Figure 12 began
by taking x to be the 164 × 8 matrix poly(c,8) (in R nota-
tion), with c the vector of adjusted compliances—an 8th degree
polynomial basis. The light dashed curve in the right panel is the
8th degree polynomial OLS fit, a pleasant surprise being how the
gbm predictions follow it over much of the compliance range.
Perhaps this is a hopeful harbinger of howprediction algorithms
could be used as nonparametric regression estimates, but the
problems get harder in higher dimensions.

Consider the supernova data: absolute brightness yi has been
recorded for each of n = 75 supernovas, as well as xi a vector of
spectral energy measurements at p = 25 different wavelengths,
so the dataset is

d = {x, y}, (32)

with x 75 × 25 and y a 75-vector. After some preprocessing, a
reasonable model is

yi
ind∼ N (μi, 1). (33)

It is desired to predict μi from xi.
Our data d is unusually favorable in that the 75 supernovas

occurred near enough to Earth to allow straightforward deter-
mination of yi without the use of xi. However, this kind of deter-
mination is not usually available, while xi is always observable;
an accurate prediction rule

ŷi = f (xi, d) (34)

would let astronomers better use Type 1a supernovas as “stan-
dard candles” in determining the distances to remote galaxies.18

In this situation, the smoothness of f (x, d) as a function of x
would be a given.

Algorithms randomForest and gbmwere fit to the super-
nova data (32). How smooth or jagged were they? For any two of
the 75 cases, say i1 and i2, let {xα} be the straight line connecting
xi1 and xi2 in R25,

{
xα = αxi1 + (1 − α)xi2 for α ∈ [0, 1]

}
, (35)

and {ŷα} the corresponding predictions. A linear model would
yield linear interpolation, yα = αyi1 + (1 − α)yi2 .

Figure 13 graphs {yα} for three cases: i1 = 1 and i2 = 3, i1 =
1 and i2 = 39, and i1 = 39 and i2 = 65. The randomForest
traces are notably eccentric, both locally and globally; gbm less
so, but still far from smooth.19

There is no need for model smoothness in situations where
the target objects are naturally discrete: movie recommenda-
tions, credit scores, chess moves. For scientific applications,

18The discovery of dark energy and the cosmological expansion of the uni-
verse involved treating Type 1a supernovas as always having the same
absolute brightness, that is, as being perfect standard candles. This is not
exactly true. The purpose of this analysis is to make the candles more stan-
dard by regression methods, and so improve the distance measurements
underlying cosmic expansion. Efron and Hastie (2016) discussed a subset
of this data in their Chapter 12.

19The relatively smoother results from gbm have to be weighed against the
fact that it gave much worse predictions for the supernova data, greatly
overshrinking the ŷi toward zero.
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Figure 13. Interpolation between pairs of points in supernova data. Left side is randomForest, right side is gbm.

at least for some of them, smoothness will be important to a
model’s plausibility. As far as I know, there is no inherent reason
that a pure prediction algorithm must give jagged results. Neu-
ral networks, which are essentially elaborate logistic regression
programs, might be expected to yield smoother output.

8. A Comparison Checklist

Prediction is not the same as estimation, though the two are
often conflated. Much of this article has concerned the dif-
ferences. As a summary of what has gone before as well as
a springboard for broader discussion, this section presents a
checklist of important distinctions and what theymean in terms
of statistical practice.

The new millennium got off to a strong start on the virtues
of prediction with Leo Breiman’s (2001) Statistical Science pub-
lication, “Statistical Modeling: The Two Cultures.” An energetic
and passionate argument for the “algorithmic culture”—what
I have been calling the pure prediction algorithms—in this
work Leo excoriated the “datamodeling culture” (i.e., traditional
methods) as of limited utility in the dawning world of Big Data.
Professor David Cox, the lead discussant, countered with a
characteristically balanced defense of mainstream statistics, not

rejecting prediction algorithms but pointing out their limita-
tions. I was the second discussant, somewhat skeptical of Leo’s
claims (which were effusive toward random forests, at that time
new) but also somewhat impressed.

Breiman turned out to be more prescient than me: pure
prediction algorithms have seized the statistical limelight in
the twenty-first century, developing much along the lines Leo
suggested. The present paper can be thought of as a continued
effort on my part to answer the question of how prediction
algorithms relate to traditional regression inference.

Table 5 displays a list of six criteria that distinguish traditional
regression methods from the pure prediction algorithms. My
previous “broad brush” warning needs to be made again: I am
sure that exceptions can be found to all six distinctions, nor are
the listed properties written in stone, the only implication being
that they reflect current usage.

Criterion 1. Surface plus noise models are ubiquitous in tradi-
tional regression methodology, so much so that their absence
is disconcerting in the pure prediction world. Neither sur-
face nor noise is required as input to randomForest, gbm,
or their kin. This is an enormous advantage for easy usage.
Moreover, you cannot be using a wrong model if there is no
model.
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Table 5. A comparison checklist of differences between traditional regression
methods and pure prediction algorithms.

Traditional regressions methods Pure prediction algorithms

1. Surface plus noise models Direct prediction
(continuous, smooth) (possibly discrete, jagged)

2. Scientific truth Empirical prediction accuracy
(long-term ) (possibly short-term)

3. Parametric modeling Nonparametric
(causality ) (black box)

4. Parsimonious modeling Anti-parsimony
(researchers choose covariates) (algorithm chooses predictors)

5. x p × n: with p ≪ n p ≫ n, both possibly enormous
(homogeneous data) (mixed data)

6. Theory of optimal inference Training/test paradigm
(mle, Neyman–Pearson) (Common Task Framework)

NOTE: See commentary in the text.

A clinician dealing with possible prostate cancer cases will
certainly be interested in effective prediction, but the disease’s
etiology will be of greater interest to an investigating scientist,
and that’s where traditional statistical methods come into their
own. If random forests had been around since 1908 and some-
body just invented regression model significance testing, the
news media might now be heralding an era of “sharp data.”

Eliminating surface-building from inference has a raft of
downstream consequences, as discussed in what follows. One
casualty is smoothness (Section 7). Applications of prediction
algorithms have focused, to sensational effect, on discrete tar-
get spaces—Amazon recommendations, translation programs,
driving directions—where smoothness is irrelevant. The natural
desire to use them for scientific investigation may hasten devel-
opment of smoother, more physically plausible algorithms.

Criterion 2. The two sides of Table 5 use similar fitting criteria—
some version of least squares for quantitative responses—but
they do so with different paradigms in mind. Following a 200-
year-old scientific path, traditional regression methods aim to
extract underlying truth from noisy data: perhaps not eternal
truth but at least some takeaway message transcending current
experience.

Without the need to model surface or noise mechanisms,
scientific truth fades in importance on the prediction side of
the table. There may not be any underlying truth. Prediction
methods can be comfortable with ephemeral relationships that
need only remain valid until the next update. To quote Breiman,
“The theory in this field shifts focus from data models to the
properties of algorithms,” that is, from the physical world to
the computer. Research in the prediction community, which is
an enormous enterprise, is indeed heavily focused on computa-
tional properties of algorithms—in particular, how they behave
as n and p become huge—and less on how they relate to models
of data generation.

Criterion 3. Parametric modeling plays a central role in tra-
ditional methods of inference, while the prediction algorithms
are nonparametric, as in (29). (“Nonparametric,” however, can

involve hosts of tuning parameters, millions of them in the case
of deep learning, all relating to the algorithm rather than to data
generation.) Lurking behind a parametricmodel is usually some
notion of causality. In the cholostyramine example of Figure 1
in Section 2, we are likely to believe that increased ingestion
of the drug cholostyramine causes cholesterol to decrease in a
sigmoidal fashion, even if strict causality is elusive.20

Abandoning mathematical models comes close to abandon-
ing the historic scientific goal of understanding nature. Breiman
states the case bluntly:

Data models are rarely used in this community [the algorith-

mic culture]. The approach is that nature produces data in a

black box whose insides are complex, mysterious, and at least

partly unknowable.21

The black-box approach has a scientifically anti-intellectual
feeling but, on the other hand, scientific understanding may
be beside the point if prediction is the only goal. Machine
translation offers a useful case study, where there has been a
several-decade conflict between approaches based on linguistic
analysis of language structure and more-or-less pure predic-
tion methods. Under the umbrella name of statistical machine
translation (SMT), this latter approach has swept the field, with
Google Translate, for example, currently using a deep learning
prediction algorithm.

Traditional statistical education involves a heavy course of
probability theory. Probability occupies a smaller portion of
the nonparametric pure-prediction viewpoint, with probabilis-
tically simple techniques such as cross-validation and the boot-
strap shouldering the methodological burden. Mosteller and
Tukey’s (1977) book, Data Analysis and Regression: A Second
Course in Statistics, favored a nonprobabilistic approach to infer-
ence that would be congenial to a modern course in machine
learning.

Criterion 4. The 11 neonate predictor variables in Table 1 were
winnowed down from an initial list of 81, following a familiar
path of preliminary testing and discussions with the medical
scientists. Parsimonious modeling is a characteristic feature of
traditional methodology. It can be crucial for estimation and,
especially, for attribution, where it is usually true that the power
of discovery decreases as the list of predictors grows.

The pure prediction world is anti-parsimonious. Control of
the predictor set, or the “features” as they are called, passes from
the statistician to the algorithm, which can coin highly inter-
active new features such as random forests’ tree variables. “The
more predictor variables, the more information,” said Breiman,
an especially accurate forecast of the deep learning era.

I was doubtful. My commentary on Breiman’s paper began:
“At first glance Leo Breiman’s stimulating paper looks like an
argument against parsimony and scientific insight, and in favor
of black boxes with lots of knobs to twiddle. At second glance it
still looks that way, but the paper is stimulating ….” Impressive

20Efron and Feldman (1991) struggled tomake a causality argument, one not
accepted uncritically by subsequent authors.

21Cox counters: “Formal models are useful and often almost, if not quite,
essential for incisive thinking.”
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results like the randomForest and gbm predictions for the
prostate cancer data, Figures 5 and 6 in Section 4, certainly back
up Leo’s claim. But it is still possible to have reservations. The
coined features seem here to be of the weak learner variety,
perhaps inherently more ephemeral than the putative strong
learners of Table 1.

This is the suggestion made in Section 6. If the prediction
algorithms work by clever combinations of armies of weak
learners, then they will be more useful for prediction than esti-
mation or, especially, for attribution (as suggested in Section 5).
“Short-term science” is an oxymoron. The use of prediction
algorithms for scientific discovery will depend on demonstra-
tions of their longer-term validity.

Criterion 5. Traditional applications ask that the n × p data
matrix x (n subjects, p predictors) have n substantially greater
than p, perhaps n > 5 · p, in what is now called “tall data.” The
neonate data with n = 812 and p = 12 (counting the intercept)
is on firm ground; less firm is the supernova data of Section 7,
with n = 75 and p = 25. On the other side of Table 5 the pure
prediction algorithms allow, and even encourage, “wide data,”
with p ≫ n. The prostate cancer microarray study is notably
wide, with n = 102 and p = 6033. Even if we begin with
tall data, as with the cholostyramine example, the prediction
algorithms widen it by the coining of new features.

How do the prediction algorithms avoid overfitting in a p ≫
n situation? There are various answers, none of them completely
convincing: first of all, using a test set guarantees an honest
assessment of error (but see the discussion of Criterion 6).
Second, most of the algorithms employ cross-validation checks
during the training phase. Finally, there is an active research
area that purports to show a “self-regularizing” property of the
algorithms such that even running one of them long past the
point where the training data are perfectly fit, as in Figure 9 of
Section 6, will still produce reasonable predictions.22

Estimation and, particularly, attribution work best with
homogeneous datasets, where the (x, y) pairs come from a nar-
rowly defined population. A randomized clinical trial, where the
subjects are chosen from a specific disease category, exemplifies
strict homogeneity. Not requiring homogeneity makes predic-
tion algorithms more widely applicable, and is a virtue in terms
of generalizability of results, but a defect for interpretability.

The impressive scalability of pure prediction algorithms,
which allows them to produce results even for enormous values
of n and p, is a dangerous virtue. It has led to a lust for ever
larger training sets. This has a good effect on prediction,making
the task more interpolative and less extrapolative (i.e., more like
Figures 5 and 6, and less like Figures 8 and 9) but muddies
attempts at attribution.23

22For instance, in anOLS fitting problemwith p > nwhere the usual estimate

β̂ = (xtx)−1xty is not available, the algorithm should converge to the β̂

that fits the data perfectly, y = xβ̂ , and hasminimumnorm ‖β̂‖; see Hastie
et al. (2019).

23An experienced statistician will stop reading an article that begins, “Over
one million people were asked…,”knowing that a random sample of 1000
would be greatly preferable. This bit of statistical folk wisdom is in danger
of being lost in the Big Data era. In an otherwise informative popular book
titled, of course, Big Data, the authors lose all equilibrium on the question
of sample size, advocating for n = all: all the flu cases in the country, all

Traditional regression methods take the matrix of predic-
tions x as a fixed ancillary statistic. This greatly simplifies the
theory of parametric regression models; x is just as random
as y in the pure prediction world, the only probability model
being the iid nature of the pairs (x, y) ∼ F. Theory is more
difficult in this world, encouraging the empirical emphasis dis-
cussed in Criterion 6. Bayesian statistics is diminished in the a-
probabilistic predictionworld, leaving a tacit frequentist basis as
the theoretical underpinning.

Criterion 6. Traditional statistical practice is based on a century
of theoretical development. Maximum likelihood estimation
and the Neyman–Pearson lemma are optimality criteria that
guide applied methodology. On the prediction side of Table 5,
theoretical efficiency is replaced by empirical methods, particu-
larly training/test error estimates.

This has the virtue of dispensing with theoretical modeling,
but the lack of a firm theoretical structure has led to “many
flowers blooming”: the popular pure prediction algorithms are
completely different from each other. During the past quarter-
century, first neural nets then support vector machines, boost-
ing, random forests, and a reprise of neural nets in their deep
learning form have all enjoyed the prediction spotlight. In the
absence of theoretical guidance we can probably expect more.

In place of theoretical criteria, various prediction competi-
tions have been used to grade algorithms in the so-called “Com-
monTask Framework.” The common tasks revolve around some
well-known datasets, that of the Netflix movie recommendation
data being best known. None of this is a good substitute for a so-
far nonexistent theory of optimal prediction.24

Test sets are an honest vehicle for estimating prediction error,
but choosing the test set by random selection from the full
set d (1) may weaken the inference. Even modest amounts of
concept drift can considerably increase the actual prediction
error, as in the prostate data microarray example of Section 6.
In some situations there are alternatives to random selection,
for example, by selecting training and test according to early and
late collection dates, as in Figures 8 and 9. In the supernova data
of Section 7, the goal is to apply a prediction rule to supernovas
much farther from Earth, so choosing the more distant cases for
the test set could be prudent.

In 1914 the noted astronomer Arthur Eddington,25 an excel-
lent statistician, suggested that mean absolute deviation rather
than root mean square would be more efficient for estimat-
ing a standard error from normally distributed data. Fisher
responded in 1920 by showing that not only was root mean
square better than mean absolute deviation, it was better than
any other possible estimator, this being an early example of his
theory of sufficiency.

the books on Amazon.com, all possible dog/cat pictures. “Reaching for a
random sample in the age of big data is like clutching at a horsewhip in the
era of the motor car.” In fairness, the book’s examples of n = all are actually
narrowly defined, for example, all the street manholes in Manhattan.

24Bayes’ rule offers such a theory, but at a cost in assumptions far outside the
limits of the current prediction environment.

25Later famous for his astronomical verification of Einstein’s theory of
relativity.
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Traditional methods are founded on these kinds of para-
metric insights. The two sides of Table 5 are playing by dif-
ferent rules: the left side functions in a Switzerland of infer-
ence, comparatively well ordered and mapped out, while Wild
West exuberance thrives on the right. Both sides have much
to gain from commerce. Before the 1920s, statisticians did
not really understand estimation, and after Fisher’s work,
we did. We are in the same situation now with the large-
scale prediction algorithms: lots of good ideas and excite-
ment, without principled understanding, but progressmay be in
the air.

9. Traditional Methods in theWide Data Era

The success of the pure prediction algorithms has had a stim-
ulating effect on traditional theory and practice. The theory,
forged in the first half of the twentieth century, was tall-data
oriented: small values of n, but even smaller p, often just p = 1
or 2. Whether or not one likes prediction algorithms, parts of
modern science havemoved into the wide-data era. In response,
traditional methods have been stretching to fit this new world.
Three examples follow.

Big data is not the sole possession of prediction algorithms.
Computational genetics can go very big, particularly in the
formof aGWAS, genome-wide association study. An impressive
example was given by Ikram et al. (2009), in a study concerning
the narrowing of blood vessels in the eye.26 The amount of
narrowing was measured for n = 15,358 individuals; each
individual had their genome assessed for about p = 106

SNPs (single-nucleotide polymorphisms), a typical SNP having
a certain choice of ATCG value that occurs in a majority of the
population or a minor, less prevalent alternative value. The goal
was to find SNPs associated with vascular narrowing.

With x = 15,356 × 106 we are definitely in big data and
wide data territory. Surface plus noise models seem out of the
question here. Instead, each SNP was considered separately: a
linear regression was carried out, with the predictor variable
the number of minor polymorphisms in the chromosome pair
at that location—0, 1, or 2 for each individual—and response
his or her narrowing measure. This gave a p-value pi against
the null hypothesis: polymorphism at location i has no effect on
narrowing, i = 1, 2, . . . , 106. The Bonferroni threshold for 0.05
significance is

pi ≤ 0.05/106. (36)

Ikram et al. (2009) displayed their results in a “Manhattan
plot” with zi = − log10(pi) graphed against location on the
genome. Threshold (36) corresponds to zi ≥ 7.3; 179 of the
106 SNPs had zi > 7.3, rejecting the null hypothesis of no
effect. These were bunched into five locations on the genome,
one of which was borderline insignificant. The authors claimed
credit for discovering four novel loci. These might represent
four genes implicated in vascular narrowing (though a spike
in chromosome 12 is shown to spread over a few adjacent
genes).

26Microvascular narrowing is thought to contribute to heart attacks, but it is
difficult to observe in the heart; observation is much easier in the eye.

Instead of performing a traditional attribution analysis with
p = 106 predictors, the GWAS procedure performed 106

analyses with p = 1 and then used a second layer of inference to
interpret the results of the first layer. My next example concerns
a more elaborate implementation of the two-layer strategy.

While not 106, the p = 6033 features of the prostate cancer
microarray study in Section 4 are enough to discourage an over-
all surface plus noise model. Instead we begin with a separate
p = 1 analysis for each of the genes, as in the GWAS example.
The data (16) for the jth gene is

dj = {xij : i = 1, 2, . . . , 102}, (37)

with i = 1, 2, . . . , 50 for the normal controls and i =
51, 52, . . . , 102 for the cancer patients.

Under normality assumptions, we can compute statistics
zj comparing patients with controls which satisfy, to a good
approximation,27

zj ∼ N (δj, 1), (38)

where δj is the effect size for gene j : δj equals 0 for “null
genes,” genes that show the same genetic activity in patients and
controls, while |δj| is large for the kinds of genes being sought,
namely, those having much different responses for patients ver-
sus controls.

Inferences for the individual genes by themselves are imme-
diate. For instance,

pj = 2�(−zj) (39)

is the two-sided p-value for testing δj = 0. However, this ignores
having 6033 p-values to interpret simultaneously. As with the
GWAS, a second layer of inference is needed.

A Bayesian analysis would hypothesize a prior “density” g(δ)
for the effect size, where g includes an atom of probability π0

at δ = 0 to account for the null genes. Probably, most of the
genes have nothing to do with prostate cancer so π0 is assumed
to be near 1. The local false discovery rate fdr(z)—that is, the
probability of a gene being null given z-value z—is, according
to Bayes rule,

fdr(z) = π0φ(z − δ)/f (z)
.= φ(z − δ)/f (z), (40)

where φ(z) = exp{−z2/2}/
√
2π , and f (z) is the marginal

density of z,

f (z) =
∫ ∞

−∞
φ(z − δ)g(δ) dδ. (41)

The prior g(δ) is most often unknown. An empirical Bayes
analysis supposes f (z) to be in some parametric family fβ(z);

the MLE β̂ is obtained by fitting fβ(·) to {z1, z2, . . . , zp}, the
observed collection of all 6033 z-values, giving an estimated
false discovery rate

f̂dr(z) = φ(z − δ)/f
β̂
(z). (42)

27If tj is the two-sample t-statistic comparing patients with controls, we take

zj = �−1F100(tj), where F100 is the cdf of a t-statistic with 100 degrees
of freedom and � is the standard normal cdf. Effect size δj is a monotone
function of the difference in expectations between patients and controls;
see Section 7.4 of Efron (2010).
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Figure 14. Estimated local false discovery curve f̂dr(z) and posterior effect size estimate Ê{δ|z} from empirical Bayes analysis of prostate cancer data (the latter divided by

4 for display purposes). Triangles indicate 29 genes having f̂dr(z) ≤ 0.20; circles are 29 most significant genes from glmnet analysis.

The dashed curve in Figure 14 shows f̂dr(z) based on a fifth-
degree log-polynomial model for fβ ,

log{fβ(z)} = β0 +
5∑

k=1

βkz
k; (43)

f̂dr(z) is seen to be near 1.0 for |z| ≤ 2 (i.e., gene almost certainly
null) and declines to zero as |z| grows large, for instance, equal-
ing 0.129 at z = 4. The conventional threshold for attributing
significance is f̂dr(z) ≤ 0.20; 29 genes achieved this, as indicated
by the triangles in Figure 14.

We can also estimate the expected effect size. Tweedie’s for-
mula (Efron 2011) gives a simple expression for the posterior
expectation,

E{δ|z} = z + d

dz
log f (z), (44)

f (z) the marginal density (41). Substituting f
β̂
for f gave the

estimate E{δ|z} in Figure 14. It is nearly zero for |z| ≤ 2, rising
to 2.30 at z = 4.

By using a two-level hierarchical model, the empirical Bayes
analysis reduces the situation from p = 6033 to p = 5. We
are back in the comfort zone for traditional methods, where
parametric modeling for estimation and attribution works well.
Both are illustrated in Figure 14.

Sparsity offers another approach to wide-data estimation and
attribution: we assume that most of the p predictor variables
have no effect and concentrate effort on finding the few impor-
tant ones. The lasso (Tibshirani 1996) provides a key method-
ology. In an OLS type problem we estimate β , the p-vector of
regression coefficients, by minimizing

1

n

n∑

i=1

(yi − xtiβ)2 + λ‖β‖1, (45)

where ‖β‖1 =
∑p

j=1 |βj|.

Here λ is a fixed tuning parameter: λ = 0 corresponds
to the ordinary least squares solution for β (if p ≤ n) while

λ = ∞ makes β̂ = 0. For large values of λ, only a few of the

coordinates β̂j will be nonzero. The algorithm begins at λ = ∞
and decreases λ, admitting one new nonzero coordinate β̂j at a
time. This works even if p > n.

The lasso was applied to the supernova data of Section 7,
where x has n = 75 and p = 25. Figure 15 shows the

first six steps, tracking the nonzero coefficients β̂j as new vari-
ables were added. Predictor 15 was selected first, then 16, 18,
22, 8, and 6, going on to the full OLS solution β̂ at step 25.
An accuracy formula suggested step 4, with the only nonzero
coefficients 15, 16, 18, and 22, as giving the best fit. (These
correspond to energy measurements in the iron portion of the
spectrum.)

Sparsity and the lasso take us in a direction opposite to the
pure prediction algorithms. Rather than combining a myriad
of weak predictors, inference is based on a few of the strongest
explanatory variables. This is well suited to attribution but less
so for prediction.

An R program for the lasso, glmnet, was applied to the
prostate cancer prediction problem of Section 4, using the
same training/test split as that for Figure 5. It performed
much worse than randomForest, making 13 errors on
the test set. Applied to the entire dataset of 102 men, how-
ever, glmnet gave useful indications of important genes:
the circles in Figure 14 show z-values for the 29 genes
it ranked as most influential. These have large values of
|zi|, even though the algorithm did not “know” ahead of
time to take t-statistics between the cancer and control
groups.

The lasso produced biased estimates ofβ , with the coordinate
values β̂j shrunk toward zero. The criticism leveled at prediction
methods also applies here: biased estimation is not yet on a firm
theoretical footing.
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Figure 15. First 6 steps of the lasso algorithm applied to the supernova data; coefficients of various predictors are plotted as a function of step size. Predictor 15was chosen
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10. Two Hopeful Trends

This was not meant to be an “emperor has no clothes” kind
of story, rather “the emperor has nice clothes but they’re not
suitable for every occasion.” Where they are suitable, the pure
prediction algorithms can be stunningly successful. When one
reads an enthusiastic AI-related story in the press, there’s usually
one of these algorithms, operating in enormous scale, doing the
heavy lifting. Regressionmethods have come a long and big way
since the time of Gauss.

Much of this article has been concerned with what the
prediction algorithms cannot do, at least not in their present
formulations. Their complex “black box” naturemakes the algo-
rithms difficult to critique. Here I have tried to use relatively
small datasets (by prediction literature standards) to illustrate
their differences from traditional methods of estimation and
attribution. The criticisms, most of which will not come as a
surprise to the prediction community, were summarized in the
six criteria of Table 5 in Section 8.

Some time around the year 2000 a split opened up in the
world of statistics.28 For the discussion here we can call the
two branches “pure prediction” and “GWAS”: both accommo-
dating huge datasets, but with the former having become fully
algorithmic while the latter stayed on a more traditional math-
modeling path. The “two hopeful trends” in the title of this sec-
tion refer to attempts at reunification, admittedly not yet very far
along.

Trend 1 aims to make the output of a prediction algorithm
more interpretable, that is, more like the output of traditional
statistical methods. Interpretable surfaces, particularly those of
linearmodels, serve as the ideal for this achievement. Something
like attribution is also desired, though usually not in the specific
sense of statistical significance.

28See the triangle diagram in the epilogue of Efron and Hastie (2016).

One tactic is to use traditional methods for the analysis of
a prediction algorithm’s output; see Hara and Hayashi (2016)
and Efron and Hastie (2016, p. 346). Wager, Hastie, and Efron
(2014) used bootstrap and jackknife ideas to develop standard
error calculations for random forest predictions. Murdoch et al.
(2019) and Vellido, Martín-Guerrero, and Lisboa (2012) pro-
vided overviews of interpretability, though neither focused on
pure prediction algorithms. Using information theoretic ideas,
Achille and Soatto (2018) discussed statistical sufficiency mea-
sures for prediction algorithms.

Going in the other direction, Trend 2 moves from left to
right in Table 5, hoping to achieve at least some of the advan-
tages of prediction algorithms within a traditional framework.
An obvious target is scalability. Qian et al. (2019) provided a
glmnet example with n = 500,000 and p = 800,000. Hastie,
Tibshirani, and Friedman (2009) successfully connected boost-
ing to logistic regression. The traditional parametric model that
has most currency in the prediction world is logistic regression,
so it is reasonable to hope for reunification progress in that
area.

“Aspirational” might be amore accurate word than “hopeful”
for this section’s title. The gulf seen in Table 5 is wide and
the reunification project, if going at all, is just underway. In
my opinion, the impediments are theoretical ones. Maximum
likelihood theory provides a lower bound on the accuracy of an
estimate, and a practical way of nearly achieving it. What can
we say about prediction? The Common Task Framework often
shows just small differences in error rates among the contestants,
but with no way of knowing whether some other algorithm
might do much better. In short, we do not have an optimality
theory for prediction.

The talks I hear these days, both in statistics and biostatistics,
bristle with energy and interest in prediction algorithms. Much
of the current algorithmic development has come from outside
the statistics discipline but I believe that future progress, espe-
cially in scientific applicability, will depend heavily on us.
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Appendix A

A.1. Out-of-Bag (OOB) Estimates, Section 3

A random forest application involves B nonparametric bootstrap sam-

ples from the original dataset d (1), say d∗1, d∗2, . . . , d∗B. Let

ŷik = f (xi, d
∗k), i = 1, 2, . . . , n and k = 1, 2, . . . ,B, (A.1)

be the estimate for the ith case obtained from the prediction rule based

on the kth bootstrap sample. Also, let

Nik = number of times case (xi, yi) appears in d∗k. (A.2)

The OOB estimate of prediction errors is

Êrr0 =
B∑

k=1

∑

i:Nik=0

L(yi, ŷik)

/
B∑

k=1

∑

i:Nik=0

1, (A.3)

where L(yi, ŷik) is the loss function; that is, Êrr0 is the average loss over

all cases in all bootstrap samples where the sample did not include the

case.

“Bagging” stands for “bootstrap aggregation,” the averaging of the

true predictors employed in random forests. The intuition behind (A.3)

is that cases having Nik = 0 are “out of the bag” of d∗k, and so form a

natural cross-validation set for error estimation.

A.2. Prediction Is Easier Than Attribution

We wish to motivate (23)–(24), beginning with model (21)–(22). Let

x̄0j be the average of the n/2 healthy control measurements for gene j,

and likewise x̄1j for the n/2 sick patient measurements. Then we can

compute z values

zj = c(x̄1j − x̄0j)
ind∼ N (δj, 1) (A.4)

for j = 1, 2, . . . ,N. Letting π0 = N0/N and π1 = N1/N be the

proportions of null and nonnull genes, (22) says that the zj take on two

possible densities, in proportions π0 and π1,

π0 : z ∼ f0(z) or π1 : z ∼ f1(z), (A.5)

where f0(z) is the standard normal density f (z), and f1(z) = φ(z−�).

With bothN0 andN1 going to infinity, we can and will think of π0 and

π1 as prior probabilities for null and nonnull genes.

The posterior moments of δj given zj, obtained by applying Bayes

rule to model (A.4), have simple expressions in terms of the log deriva-

tives of the marginal density

f (z) = π0f0(z) + π1f1(z), (A.6)

d(z) ≡ E{δ|z} = z + d

dz
log f (z),

and

v(z) ≡ var{δ|z} = 1 + d2

dz2
log f (z). (A.7)

See Efron (2011). That is,

δj|zj ∼ (dj, vj), (A.8)

where the parenthetical notation indicates the mean and variance of a

random quantity and dj = d(zj), vj = v(zj). Then Xj ∼ N (δj/2c, 1)

for the sick subjects in (21) gives

Xj|zj
ind∼

(
dj

2c
,
vj

4c2
+ 1

)
. (A.9)

(The calculations which follow continue to focus on the “plus” case of

(21).)

A linear combination

S =
N∑

j=1

wjXj (A.10)

has posterior mean and variance

S ∼

⎛
⎝

N∑

j=1

w0A0,

N∑

j=1

w2
j Bj

⎞
⎠ , (A.11)

with

Aj =
dj

2c
and Bj =

vj

4c2
+ 1.

For the “minus” arm of (21) (the healthy controls), S ∼
(−

∑N
1 wjAj,

∑N
1 B2j ).We can use S as a prediction statistic, predicting

sick for S > 0 and healthy for S < 0.

The probability of a correct prediction depends on

R2 = mean(S)2/var(S) =

⎛
⎝

N∑

1

wjAj

⎞
⎠
2 /⎛

⎝
N∑

1

w2
j Bj

⎞
⎠ . (A.12)

This is maximized for wj = Aj/Bj (as with Fisher’s linear discriminant

function), yielding

S ∼

⎛
⎝

N∑

1

A2
j /Bj,

N∑

1

A2
j /Bj

⎞
⎠ and R2 =

N∑

1

A2
j /Bj. (A.13)

A normal approximation for the distribution of S gives

�(−R) (A.14)

as the approximate probability of a prediction error of either kind; see

Efron (2009).

It remains to calculate R2.

Lemma 1. A continuous approximation to the sum R2 =
∑N

1 A2
j /Bj

is

R2 =
N2
1

N0

∫ ∞

−∞

�2

4c2
N0/N1

1 + N0
N1

f0(z)
f1(z)

1

1 + v(z)
4c2

f1(z)dz. (A.15)

Before verifying the lemma, we note that it implies (23): letting

N0 → ∞ with N1 = O(N0), and using (A.4), gives

R2 =
N2
1

N0

∫ ∞

−∞

�2

4c2
exp{−(z2/2) + 2�z − (�2/2)}√

2π (1 + v(z)/4c2)
dz. (A.16)

The variance v(z) is a bounded quantity under (A.4)—it equals 0.25

for � = 1, for instance—so the integral is a finite positive number,

say I(�). If N1 = γN
1/2
0 , then the prediction error probabilities are

approximately �(−γ I(�)1/2) according to (A.14). However, N1 =
o(N

1/2
0 ) gives R2 → 0 and error probabilities → 1/2.

It remains to verify the lemma. Since any δj equals either 0 or� (22),

d(z) = E{δ|z} = Pr{δ �= 0 | z}�
= tdr(z)�, (A.17)

where tdr(z) is the true discovery rate Pr{δ �= 0|z},

tdr(z) = π1f1(z)

π0f0(z) + π1f1(z)
= 1

1 + π0
π1

f0(z)
f1(z)

= 1

1 + N0
N1

f0(z)
f1(z)

. (A.18)
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From (A.11) and (A.13), we get

R2 =
N∑

1

A2
j

Bj
=

N∑

1

d2j

4c2 + vj

=
N∑

1

tdr2j

4c2 + vj
= N

∫ ∞

−∞

tdr(z)2�2

4c2 + v(z)
f (z)dz, (A.19)

the last equality being the asymptotic limit of the discrete sum.

Since tdr(z)f (z) = π1f1(z) = (N1/N0)f1(z), (A.18) becomes

R2 = N1

∫ ∞

−∞

tdr(z)�2

4c2 + v(z)
f1(z)dz. (A.20)

Then (A.17) gives the lemma. Moreover, unless N1 = O(N0), (A.17)

shows that tdr(z) → 0 for all z, supporting (24).
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