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Abstract

The need for reliable landscape-scale monitoring of forest disturbance has grown with increased 

policy and regulatory attention to promoting the climate benefits of forests. Change detection al-

gorithms based on satellite imagery can address this need but are largely untested for the forest 

types and disturbance regimes of the US Northeast, including management practices common in 

northern hardwoods and mixed hardwood-conifer forests. This study ground-truthed the “off-the-

shelf” outputs of three satellite-based change detection algorithms using detailed harvest records 

and maps covering 43,000 ha of working forests in northeastern New York.

Study Implications: Algorithms performed best in detecting clearcuts, but performed much worse 

and poorly overall in detecting the partial harvest prescriptions (e.g., shelterwoods, thinnings) that 

were far more common in our ground-truthing data (and for this region). Among the algorithms 

tested, Landtrendr was consistently superior at both detecting partial harvests and estimating 

harvest intensity (volume removals), but there still remained substantial room for improvement. 

Overall, we suggest that these algorithms need further training and tuning to be reliably used for 

accurate monitoring of harvest-related activities in working forests of the US Northeast.
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Forest lands are becoming increasingly valued for 

providing natural climate solutions, especially the re-

moval and sequestration of atmospheric greenhouse 

gases that drive global climate change (Malmsheimer 

et  al. 2008, Fargione et  al. 2018). As regulatory and 

market-based offset programs expand to include more 

forest landowners across the landscape, there has been 

a corresponding need for high-resolution, large-scale 

monitoring capabilities to evaluate both historical and 

prospective land cover dynamics, land use practices, 

and their implications for carbon stocks. Such infor-

mation has become essential for achieving more ac-

curate greenhouse gas accounting, from regional to 

global scales as well as for carbon offset markets and 

regulatory programs, to ensure compliance at the in-

dividual parcel scale. To meet this need, a growing 

variety of landscape-scale carbon monitoring frame-

works, methods, and tools have emerged to provide 

monitoring and modeling capabilities based largely 

on remotely-sensed data, given the impracticalities of 
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field data collection across very large (landscape) scales 

(Kennedy et al. 2010, Zhu & Woodcock 2014, Healey 

et al. 2018, Housman et al. 2021).

In addition to proprietary software applications, 

extensions, and tools for desktop geographic informa-

tion system (GIS) platforms, there are several freely 

available forest change detection algorithms or corres-

ponding data products, including Landtrendr (LT-GEE; 

Kennedy et  al. 2010), Continuous Change Detection 

and Classification (CCDC; Zhu and Woodcock 2014) 

and the Landscape Change Monitoring System (LCMS; 

Housman et  al. 2021). In general, these algorithms 

process chronologically through a time-series of sat-

ellite images on a pixel-by-pixel basis, evaluate stable 

or cyclic patterns in pixel values, predict future values 

based on those patterns, and then identify discontinu-

ities or “breaks” where observed values deviate from 

predictions. For forest change detection, this process 

commonly involves tracking one or more measures of 

“greenness” over time, such as the normalized burn 

ratio (NBR; USGS 2021a) or normalized difference 

vegetation index (NDVI; USGS 2021b), identifying 

when a significant or abrupt change has occurred and 

then estimating the magnitude of that change (based 

on deviation from expected values). At present, at 

least a dozen algorithms of this sort exist to provide 

large-scale retrospective assessment of forest disturb-

ance rates and patterns (Cohen et al. 2010, Banskota 

et  al. 2014, Zhu 2017). Many of these algorithms 

were developed because of the availability of stand-

ardized data products like Landsat Analysis Ready 

Data (Cohen and Goward 2004, Dwyer et  al. 2018) 

and open computational platforms like Google Earth 

Engine. These resources have made the algorithms 

much more accessible to researchers (Zhu 2017) for 

a range of applications in environmental science, land 

planning, and resource management (Powell et  al. 

2010, Schroeder et al. 2011, Zhu and Lui 2014, Hilsop 

et  al 2019, Yin et  al. 2020, Zang and Fan 2020, De 

Marzo et al. 2021).

However, the validation of the outputs of forest 

change algorithms (i.e., forest disturbance maps 

indicating the timing and magnitude of changes) using 

reliable ground-truth information remains a critical 

and unmet challenge (Cohen et  al. 2010). Historical 

datasets documenting the spatial and temporal pat-

terns of forest disturbance are rare, expensive to com-

pile and curate (Banskota et  al. 2014), and typically 

not available with the same temporal frequency of 

Landsat data (Kennedy et al. 2010). For these reasons, 

most satellite-derived disturbance mapping techniques 

use aerial imagery and manual design-based validation 

methods, like TimeSync (Cohen et  al. 2010, Thomas 

et  al. 2011). Such expert-based procedures are valid 

and effective but have inherent limitations, including 

modeling assumptions and human error, relative to 

ground-truthing with independent and directly meas-

ured (or recorded) data sources. For working forests 

that are privately owned, the ideal ground-truthing 

data would be the actual harvest records maintained 

by the landowner or forester but for many reasons, the 

availability of this kind of information is (understand-

ably) quite limited.

In this study, by working with management records 

and digital maps provided by forest landowners, we 

evaluated the ability of three Landsat-derived forest 

change algorithms (CCDC, LCMS, and LT-GEE) to de-

tect known harvest disturbances at the correct time(s) 

and location(s) across a 43,300 ha study landscape 

during a 30-year period (1990–2019). We also analyzed 

whether the disturbance magnitude estimates provided 

by two of the algorithms (CCDC and LT-GEE) ex-

plained variation in actual harvest intensity (based on 

pulpwood volume removals). We focused on northern 

hardwood forests managed primarily with uneven-

aged silviculture (e.g., shelterwoods). By comparing 

relative measures of performance across algorithms 

and within similar types of harvest prescriptions, we 

sought to provide independent ground-truthing using 

landowner data to represent a type of working forest 

that, although ubiquitous across the US Northeast, has 

only played a limited role so far in the training and 

testing of these algorithms.

Methods

Study Area

We evaluated change detection algorithms across 

43,300 ha (107,000 ac) of noncontiguous parcels of 

forest land in the Adirondack Mountains region of 

northern New York state (Figure 1) for which we ac-

quired harvest records from two different landowners. 

Comprising 85% of the study area, the Upper Hudson 

Woodlands (UHW) consists of 49 parcels that are 

privately owned and managed as a working forest 

landscape. The UHW lands have been continuously 

managed for forest products by the current (ATP, the 

Dutch Pension Fund) and previous (Finch, Pruyn & 

Co.) landowners since the early 20th century. Harvest 

records for UHW lands extend back to 2010, which 

coincides with the timing of land sale and transition of 

management operations to F&W Forestry LLC for ATP. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jof/advance-article/doi/10.1093/jofore/fvab075/6526990 by guest on 11 February 2022



3Journal of Forestry, 2022, Vol. XX, No. XX

The records included GIS shapefiles of harvest compart-

ments and corresponding tables of the harvest year(s), 

prescription (harvest type), and volume removals by 

species and grade. The remaining study area (and single 

parcel) was Huntington Wildlife Forest (HWF), a 6,000 

ha research and education property operated since 

1932 by the State University of New York, College 

of Environmental Science and Forestry, in Newcomb, 

New York. Forest harvesting at HWF since its acqui-

sition has been conducted for research, teaching, and 

demonstration purposes. We accessed management rec-

ords from 1990 to 2019 for HWF that included year, 

prescription, and volume removal estimates for each 

harvest operation. Across the two groups of harvests, 

the average harvest size was 50 ha, with the harvests 

ranging from 0.25 ha to 226 ha. In total, we evaluated 

algorithm performance against 229 documented har-

vest operations, nearly all (94%) of which took place in 

the last decade (2010–2019). Analysis was conducted 

on the entire study area; however, to better visualize 

Figure 1. Map of study area including forest parcels in northern New York State (USA). Algorithm performance was 

evaluated only for areas within parcel boundaries totaling approximately 43,000 ha.
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the algorithm outputs, all map figures (except Figure 1)  

depict a majority portion of the study area including 

all of HWF and the northernmost parcels of the UWH.

Preprocessing

We organized all the harvests into five categories: 

clearcut, shelterwood, thinning, unspecified and other 

(Table 1). Most harvests were categorized as shelter-

wood (n = 115) and thinnings (n = 38). The unspecified 

harvests (n = 55) lacked prescriptions but included har-

vest year and removal volumes. The other (n = 9) cat-

egory included miscellaneous prescriptions that were 

infrequent among the records analyzed. All unspecified 

harvests were from UHW.

Change Detection Algorithms

The CCDC algorithm is a harmonic regression model 

that includes elements of intra-annual phenology, 

gradual interannual change, and abrupt changes (Zhu 

& Woodcock 2014). Change is assigned when three 

consecutive deviations from the model are recorded 

for the same pixel (Zhu & Woodcock 2014). Because 

the CCDC algorithm uses all available Landsat images, 

it is able to produce outputs at finer temporal scales 

than other algorithms—up to every 16 days, the fre-

quency at which Landsat images are produced. To be 

consistent with the other algorithms, we used just the 

year of disturbance detected by CCDC.

LT-GEE is a temporal segmentation algorithm that 

uses both point-to-point and regression-based fitting 

(Kennedy et al. 2010). The LT-GEE algorithm works 

on medoid composite values from image stacks from 

the same time period across multiple years; here, we 

limited analysis to imagery from July 1 to Aug 31 each 

year to capture leaf-on season. We evaluated NBR 

using LT-GEE as it has been found to be most sensi-

tive to forest disturbance events (Kennedy et al. 2010). 

Using NBR also allowed us to be more consistent with 

the implementation of the LCMS ensemble.

The LCMS is an ensemble prediction based on 

outputs of LT-GEE and CCDC that have been imple-

mented using the same Landsat and Sentinel 2 imagery 

series (Housman et  al. 2021). The LCMS outputs 

including “year of disturbance” are generated by the 

USDA Forest Service as data products. Disturbance 

or “loss” magnitude estimates from LCMS have not 

yet been published for our study area at the time of 

this study.

To assess algorithm performance, we used two sets 

of outputs: year of most recent disturbance (Figure 2)  

and magnitude of most recent disturbance (Figure 3).  

LT-GEE and CCDC were implemented without cali-

bration to analyze Landsat analysis-ready data in 

Google Earth Engine. LCMS outputs were acquired 

from the Forest Service data viewer (https://apps.

fs.usda.gov/lcms-viewer/, accessed 18 March 2021). 

Although “tuning” is recommended for both CCDC 

and LT-GEE (Landtrendr implemented with Google 

Earth Engine) applications, we used an “off-the-

shelf” application of both algorithms to allow for the 

most straightforward comparison between them and 

the LMCS data product. LCMS does not allow end-

users to perform tuning, nor has it been specifically 

tuned for US Northeast forests (N. Pugh, personal 

communication, November 2020). All algorithm out-

puts had the same 30  ×  30 m grid geometry at an 

annual time scale and were clipped to the same prop-

erty boundaries so that areas both known to be har-

vested and known not be harvested were included in 

the analysis.

Algorithm Performance Assessment

We evaluated performance of the change detection 

algorithms by comparing their outputs with detailed 

forest harvest records and maps provided by land-

owners using a raster-based GIS overlay analysis. To 

ground-truth the algorithm outputs against the harvest 

records, we assigned pixel states based on two binary 

Table 1. Summary of forest harvest operations included in this study.

Category Harvest types n Area (ha)

Upper Hudson 

Woodlands

Huntington 

Wildlife Forest

n Area (ha) n Area (ha)

Clearcut Clearcuts, permanent clearings 12 119 3 76 9 43

Shelterwood Shelterwoods 115 6,429 112 6,378 3 51

Thinning Thinning from above and below 38 1,318 33 1,264 5 54

Other Salvage, selection systems, OSR, seed 

tree, strip cuts

9 322 2 149 7 173

Unspecified N/A 55 3,898 55 3,898 0 0
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conditions, calculated a confusion matrix for each al-

gorithm, and then derived several metrics from these 

matrices. A detailed description of this process can be 

found in Figure 4 and is described below.

Raster overlay analysis allowed for pixels to be 

assigned to one of four groups based on two binary 

classifications: (1) whether or not a disturbance was 

detected and (2) whether or not a harvest was recorded 

at that location. Pixels that met neither condition (no 

detected disturbance and no recorded harvests) were 

classified as true negative. Pixels that met both condi-

tions (both a harvest was detected and the year the har-

vest was detected matched the harvest records) were 

classified as true positive (TP). Because of the nature of 

Figure 2. Maps of disturbance timing (year of most recent disturbance) for Continuous Change Detection and Classification 

(CCDC), Landscape Change Monitoring System (LCMS), and Landtrendr (LT-GEE). Maps show only the northern portion of 

the study area with the most contiguous tracts of managed forest land for clarity. This analysis was conducted for the entire 

study area. Inset map next to legend shows examples of parcel boundaries (mostly straight lines of northwest-southeast 

or northeast-southwest orientation), harvest units (irregular polygons located within property boundaries) and a two-lane 

highway (NYS Route 28N).

Figure 3. Maps of disturbance magnitude for Continuous Change Detection and Classification (CCDC) and Landtrendr (LT-GEE), 

showing only a subset of the study area with the most contiguous tracts of managed forest land. Magnitude (loss) outputs 

were not available for the Landscape Change Monitoring System (LCMS). Note that disturbance magnitudes are unitless 

indices of deviation from expected spectral values and were not scaled equally between outputs.
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both Landsat imagery and typical forestry operations 

in the Northeast US, where much of the harvesting oc-

curs in the winter during leaf off conditions, we re-

corded any detected disturbances within ± 1 year of the 

recorded harvest period as a TP. Likewise, for harvests 

that occurred over multiple years, all harvest years and 

an additional one-year window on either side of the 

harvest were considered a satisfactory match.

Pixels that met one but not both conditions fell 

into one of two categories. False positive (FP) values 

(commission errors) were those pixels for which a dis-

turbance was detected, but either they were in an area 

where no harvest occurred, or the detected year of dis-

turbance returned by the algorithm did not match the 

recorded year(s) of harvest. Finally, false negative (FN) 

was assigned to pixels where no disturbance was de-

tected for areas where a harvest was recorded (omis-

sion errors). Example maps of classified pixels can be 

found in Figure 5.

We note that areas mapped as FP, although de-

fined as error for our purposes, may represent an ac-

curate detection of disturbance that was simply not 

represented in harvest operations records. Because 

these algorithms separate detection from causal at-

tribution, assessing their overall performance would 

require ground-truthing data on all possible forest dis-

turbances unrelated to harvest operations, which was 

beyond our current scope. For this reason, our FP re-

sults (commission errors) have limited interpretability 

and have been largely set aside as evidence. For areas 

mapped as FN, we also note that these algorithms 

were trained primarily in western North American 

forests where stand replacing events are the primary 

disturbance regime, both ecologically (fire) and com-

mercially (clearcut harvesting) (Kennedy et  al. 2010; 

N. Pugh, personal communication, November 2020). 

Yet most harvest prescriptions used in our study area 

(and hardwood forests across the broader Northeast 

US) are less intensive than clearcutting, such as shel-

terwood, group selection, and thinning. By definition, 

these practices do not uniformly disrupt or remove the 

canopy across an entire harvest unit but leave some 

portion of the canopy intact for a period of time, al-

though some or all of the residual canopy may be har-

vested years or decades later. Given this context, we 

expected that most harvest units in our study, which 

were not clearcuts, would contain nontrivial amounts 

of FN pixels. Therefore, our assessment of FN pixel re-

sults (i.e., where algorithms failed to detect harvest dis-

turbance) was focused on relative performance of the 

algorithms against the same set of harvest operations.

Confusion matrixes were derived from the pixel 

classification. The total area represented in each pixel 

state and the F1 statistic were used to assess the rela-

tive accuracy between algorithms. Higher proportions 

of TP and lower proportions of FN were used as indi-

cators of better algorithm performance. Lower levels of 

FPs increased the readability of the maps, but because, 

as previously noted, we could not identify the causal 

agent of these disturbances, we used this metric in a 

secondary capacity. The F1 statistic is the harmonic 

mean of the precision and recall of each algorithm 

Figure 4. Overview of methods for evaluating performance of forest change detection algorithms (Continuous Change 

Detection and Classification [CCDC], Landscape Change Monitoring System [LCMS], Landtrendr [LT-GEE]) in detecting 

known harvest operations.
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(Chinchor 1992). We also calculated the total area of 

detected disturbance across all harvest polygons as a 

proportion of the study area.

Finally, as a measure of “baseline” or failsafe per-

formance, we calculated the proportion of harvest 

polygons that did not contain at least one TP pixel for 

each algorithm. Although in practice, a single pixel 

would be insufficient to identify a harvest-related dis-

turbance on its own, this allowed us to estimate how 

often each algorithm failed to detect any disturbance 

within the boundaries of a known harvest operation.

Once all pixels were classified, the TPs were extracted 

and zonal statistics were used to determine the number 

of TPs per polygon. The proportion of TPs for each 

polygon was averaged by harvest type in the previously 

described categories. The mean percent harvest area 

detected was used to compare algorithm performance 

(e.g., percent harvest area detected) across five different 

categories of prescriptions: clearcuts, shelterwoods, thin-

nings, unspecified, and other. ANOVA with a Tukey’s 

HSD was used to test for significant differences in har-

vest area detected (α = 0.05) between algorithms within 

each prescription type. We did not compare algorithms 

across harvest categories due to variable sample sizes 

and uncertainty from grouping harvests by type/cat-

egory, instead of working with detailed prescriptions. 

For instance, because it is possible for a shelterwood to 

be less intensive than a thinning, we did not expect that 

formally comparing algorithm performance across such 

categories would be helpful.

Disturbance Magnitude and Harvest 
Intensity

The magnitude of disturbance returned by CCDC 

and LT-GEE algorithms was a unitless value of the 

Landsat-derived spectral index (e.g., NBR, NDVI), 

which represented a deviation from the algorithm’s ex-

pected value for that index for each pixel. We assessed 

whether algorithm estimates for disturbance magni-

tude were related to known harvest intensities using 

only those pixels correctly identified as disturbed (TP) 

from CCDC and LT-GEE outputs. LCMS disturbance 

magnitude (or loss) estimates were unavailable at the 

time of analysis.

Using least-squares regression, we compared 

LT-GEE and CCDC change magnitude estimates with 

Figure 5. Maps depicting pixel classifications for forest change detection algorithms (Continuous Change Detection and 

Classification [CCDC], Landscape Change Monitoring System [LCMS], Landtrendr [LT-GEE]) relative to known forest 

harvest activities. Areas in dark blue represent a timely detection of disturbance within a harvest unit, i.e., true positive 

(TP) pixels. False positive (FP) pixels are where algorithms detected disturbance outside of known harvest unit boundaries 

and false negative (FN) are pixels within harvest units where disturbance was not detected at or near the time of harvest. 

Total areas of TP, FP, and FN pixels tabulated for each algorithm/map are provided for reference (lower right); see Table 2 

for same results in percentage format. Maps shows only the northern portion of the study area with the most contiguous 

tracts of managed forest land for clarity. This analysis was conducted for the entire study area.
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recorded pulpwood removal amounts (or depletions) 

from each UHW harvest unit. The regression model 

predictor variable was the sum of the pixel-based 

disturbance magnitudes for each harvest polygon, 

and the response variable was the total pulpwood 

removals recorded for the same harvest polygon. 

Both variables were log-transformed prior to model 

fitting and the relative performance of CCDC and 

LT-GEE was assessed based on coefficients of vari-

ation and root mean square error (RMSE). All poly-

gons were included in the magnitude analysis, and 

those polygons that contained no pixels classified 

as TP had a total magnitude of zero. We focused 

on pulpwood removals because all of the harvests 

yielded pulpwood volume, whereas not all yielded 

sawtimber (overall, pulp removals were about four 

times sawtimber removals). Yield data from HWF 

was not included in this analysis due to incomplete 

records and incompatibility of volume units with 

UHW records.

Results

Harvest Detection Accuracy

Across 43,300 ha of working forest lands, we found 

that LT-GEE consistently outperformed LCMS and 

CCDC in detecting harvest disturbances (Table 2). 

Focusing on only the areas that were delineated as 

harvested, LT-GEE detected canopy disturbance for 

32.23% of the delineated harvest area and LCMS and 

CCDC detected 11.69% and 1.87% of the delineated 

harvested area, respectively. LT-GEE correctly de-

tected disturbance inside harvest units 17 times more 

often than CCDC (8.70% versus 0.50% of the total 

study area) and nearly three times more than LCMS 

(Table 2). Although LT-GEE had the highest rate of 

TPs, it also had the highest rate of FPs, at 5.46%, com-

pared with 1.52% for LCMS and 1.01% for CCDC. 

Although more FP pixels can result in “noisy” map 

outputs, they may actually reflect real disturbances, 

including natural causes, not represented in harvest 

records (which we used as the sole basis for ground-

truthing). Additionally, LT-GEE had the highest F1 

score 0.44, whereas LCMS and CCDC had 0.21 and 

0.04, respectively.

Harvest Detection Accuracy by 
Harvest Type

None of the algorithms consistently detected 50% 

or greater of recorded harvests, by area, regard-

less of prescription type. LCMS surpassed the 

50% threshold only for clearcut harvests. Overall, 

LT-GEE performed best and most consistently, as 

it detected partial harvests better than LCMS and 

CCDC and had only a slightly lower detection than 

LCMS for clearcut harvests. LT-GEE was the only 

algorithm to consistently approach or exceed the 

30% harvest area detected benchmark (Figure 6). 

LT-GEE also performed best with shelterwoods, the 

most common prescription type, detecting more 

than twice the area of these harvests compared 

with LCMS.

Within harvest type groups, there was a sig-

nificant difference in the performance of all three 

algorithms for the shelterwood and unspecified cat-

egory (Figure 6). For thinnings, the performance of 

LT-GEE was significantly better than LCMS and 

CCDC, which were not significantly different from 

each other. For clearcuts, LCMS was significantly 

better than CCDC, and LT-GEE was intermediate 

to LCMS and CCDC and not significantly different 

from either.

Table 2. Harvest detection performance based on 

a combined confusion matrix (summary of pixel 

states) that includes results for three algorithms 

(Continuous Change Detection and Classification 

[CCDC], Landscape Change Monitoring System 

[LCMS], and Landtrendr [LT-GEE]) compared 

against the same harvest records. Values given are 

percentages of pixels (or area) calculated for each 

algorithm’s outputs separately. Each algorithm was 

run off the shelf without specific tuning to the study 

area. True positives indicate pixels where a known 

harvest occurred and the algorithm detected a 

disturbance within one year of the harvest period; 

false negatives indicate where the algorithm failed 

to detect any timely disturbance within the harvest 

area; and false positives indicate where disturbance 

was detected but no known harvest took place.

 

 Harvest Occurrence

Yes No
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Yes

 True Positive (TP)  False Positive (FP)

 CCDC: 0.5%  CCDC: 1.0%

LCMS: 3.1% LCMS: 1.5%

LT-GEE: 8.7% LT-GEE: 5.5% 

No

 False Negative (FN)  True Negative (TN)

 CCDC: 25.2%  CCDC: 73.3%

LCMS: 22.4% LCMS: 73.0%

LT-GEE: 16.4% LT-GEE: 69.4% 
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Baseline Detection

CCDC also had the lowest performance of the three 

algorithms in the baseline metric, which represented 

a failsafe for harvest detection purposes. CCDC failed 

to detect any disturbance within polygon boundaries 

for nearly half (45.8%) of all recorded harvests, com-

pared with less than one-tenth of harvests that were 

completely undetected by LCMS (7.8%) and LT-GEE 

(4.8%). When the baseline threshold for detection was 

raised from one to five pixels (equaling an area just 

under 0.5 ha), CCDC failed to detect any disturbance 

for nearly three out of four recorded harvests (74.6%). 

Raising the detection threshold as above had only 

nominal effects on baseline detection rates for LCMS 

and LT-GEE. For monitoring applications, detecting 

some portion of a harvest disturbance may be prefer-

able to no detection at all, as a higher level of base-

line performance can more reliably provide locations 

to conduct field reconnaissance to assess the disturb-

ance intensity and cause(s). Although the detection of 

a single pixel is not a reliable indicator of forest harvest 

or any other disturbance, the relative ability of different 

algorithms to detect at least a single pixel of change in 

areas known to have been harvested is an important 

practical consideration for monitoring purposes.

Magnitude

Based on regression analysis, disturbance magni-

tudes estimated by LT-GEE (the sum of magnitudes 

corresponding to all TP pixels for each harvest) were 

a significant predictor of harvest intensity, using pulp-

wood depletions as the response variable (Figure 7). 

As the detected intensity of harvest increased, so did 

the reported amount of pulpwood harvested. A log-log 

regression based on LT-GEE explained two-thirds 

(67.84%) of the variation in the pulpwood removals 

data, whereas the equivalent CCDC regression ex-

plained under one-tenth (9.14%) of the variation in 

pulpwood depletions. The RMSE for LT-GEE was also 

much lower than for CCDC, 0.56 compared with 0.80, 

respectively. CCDC explained much less variation than 

LT-GEE, in large part due to CCDC’s relatively poor 

baseline detection rate. We identified 105 harvests for 

which CCDC did not detect a single pixel of change 

that coincided temporally with recorded harvest op-

erations (see Baseline Detection section). Where no 

disturbance was detected for a given harvest, the mag-

nitude estimates were defined as null, which resulted 

in the zero-inflated distribution apparent in the CCDC 

regression scatterplot (Figure 7).

Discussion

The ability of Landsat-derived change detection algo-

rithms to detect harvests in Adirondack working for-

ests was highly variable, but overall, their performance 

suggests there is ample room for improvement before 

they can be used to reliably monitor US Northeast 

Figure 6. Mean percentage of harvest area detected by harvest type for three Landsat-derived change detection algorithms 

(Continuous Change Detection and Classification [CCDC], Landscape Change Monitoring System [LCMS], Landtrendr 

[LT-GEE]). Comparison of means was done between algorithms within each harvest type based on Tukey’s HSD. Sample 

sizes for each harvest type are given below each column cluster, error bars represent ±1 SE, and significant differences 

among means (P < 0.05) are indicated by different lower case letters.
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forest landscapes. All three algorithms performed their 

best in detecting clearcuts, but two of them (CCDC 

and LCMS) were much less effective in detecting par-

tial harvest operations such as shelterwoods and thin-

nings, which are far more common in this region of 

northern hardwoods (and comprised 94% of the de-

fined prescriptions in our study’s harvest records).

By contrast, the LT-GEE algorithm performed equally 

well across harvest prescriptions and its disturbance 

magnitude estimates were useful for modeling harvest 

yields (pulpwood volume removals). These results indi-

cated that LT-GEE has the most off-the-shelf potential for 

monitoring purposes in the region. However, a tradeoff 

that came with LT-GEE’s superior performance was 

that of higher sensitivity and output noise. LT-GEE had 

roughly five times the commission error (FP pixels) as 

the other algorithms, which resulted in noticeably noisier 

maps that could make interpretation more difficult in 

some cases. Yet overall, we found that LT-GEE generated 

the most reliable and useful outputs, and in a few cases, 

actually indicated where harvests must have occurred 

but were missing from our ground-truthing data.

The simultaneous use of multiple algorithms can 

support the interpretation of, and overall confidence in, 

results in cases where two or more sets of outputs are 

in agreement. For any combination of two algorithms, 

we found agreement on disturbance location about one-

fourth (25.61%) of the time. For all three algorithms, 

we found that agreement decreased by an order of mag-

nitude to roughly 2.5%, consistent with Cohen et al.’s 

(2017) agreement rate of <5% for any combination of 

three similar algorithms. Cohen et al. (2017) also found 

that change detection probability was positively related 

to the estimated magnitude of the spectral change (i.e., 

decreased “greenness”), meaning that relatively small 

spectral changes (<50% reduction in index value) were 

more likely to go undetected. Because uneven-aged man-

agement via partial harvests were by far the most preva-

lent in our study (94% of defined prescriptions, 70% 

of all harvests recorded), this lack of sensitivity may ex-

plain the relatively low detection rate. Although LT-GEE 

was able to detect most harvest types at a similar rate 

and was overall the best performer among the three 

tested, it only detected on average 30%–45% of each 

harvest unit (by area).

Study Limitations and Sources of 
Uncertainty

We also note that the prevalence of partial harvests 

posed issues for not only the algorithms tested but also 

for the ground-truthing analysis itself. As discussed, the 

most common silvicultural prescriptions in northern 

hardwoods are partial harvests such as shelterwoods 

and thinnings, which can have residual stocking ran-

ging from 20–80 ft2 ac−1 (4.6–18.4 m2ha−1; Leak et al. 

2014). Translating this to a GIS-based ground-truthing 

analysis, if by definition not all pixels within a harvest 

unit were disturbed by the harvest operation, then an 

algorithm that detected only a portion of the harvest 

area could, in fact, have completely detected the ac-

tual harvest operation. However, the available ground-

truthing data, which (understandably) did not contain 

detailed maps of where the canopy was removed or left 

intact after each harvest operation, precluded any such 

analysis. Instead, we estimated performance based on 

the correctly detected area (TP pixels) as a proportion 

Figure 7. Relationships between disturbance magnitudes (as estimated by Landsat-derived change detection algorithms) and 

harvest intensity (based on recorded pulpwood removals), based on least squares regression analysis. Pixel magnitudes were 

summed for each harvest polygon and regressed against pulpwood volumes; all data were log-transformed prior to model 

fitting. Note the sample size for Continuous Change Detection and Classification (CCDC) (n = 86) is lower than Landtrendr 

(LT-GEE) (n = 150) due to CCDC’s lower baseline detection rates, resulting in more null values that were excluded from analysis.
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of the total harvest unit area, while recognizing in most 

cases that the entire unit (polygon) was not actually 

harvested.

In light of this caveat, our area-based detection re-

sults should only be interpreted for algorithm cross-

comparison purposes and not as absolute measures 

of accuracy. For instance, it is possible that LT-GEE’s 

mean detection rate of shelterwood harvests of ap-

proximately 30% by area could actually represent a 

true detection accuracy closer to 50% or 75% or even 

90%, depending on the proportion of canopy that 

was removed in each of these harvests, which was un-

known. Moreover, the prevalence of partial harvests 

and residual canopy coverage required a nuanced in-

terpretation of ground-truthing results, especially FP 

pixel states (see Algorithm Performance Assessment 

section). Those pixels classified as FP (commission 

errors) could in reality represent actual disturbances, 

such as windthrow or disease-mediated tree mortality, 

that are not reflected in harvest records and for which 

historical data is unavailable for ground-truthing. 

Causal attribution of algorithm-detected disturbances 

remains a complex challenge that to date has required 

expert systems to tackle (Cohen et al. 2010); here we 

side-stepped this issue by assuming that any disturb-

ance detected at the correct place and time was harvest 

related.

We used the year of most recent disturbance out-

puts for practical reasons, including the fact that it 

was the only LCMS output available for cross com-

parisons. However, this choice could have introduced 

bias in cases where algorithms detected one or more 

disturbances prior to the most recent disturbance, and 

the earlier detections coincided with harvest timing. 

Such bias would have been unfavorable to algorithm 

performance estimates; that is, where we erroneously 

assigned FN instead of TP for an accurate harvest detec-

tion. Yet overall, because the vast majority of harvests 

in this study occurred in the last decade (2010–2019), 

we suggest that there was a negligible likelihood of a 

postharvest disturbance unrelated to an earlier harvest 

operation (e.g., stand reentry for residual canopy tree 

removal in a shelterwood). To further examine this po-

tential bias, we replaced the CCDC outputs of year of 

most recent disturbance with year of maximum disturb-

ance as inputs to the confusion matrix and assumed 

that a harvest would represent the maximum disturb-

ance that occurred within any pixel where multiple 

disturbances were detected over the study period. We 

found that multiple (>1) disturbances were detected by 

CCDC in only 0.03% of the study area and that when 

we assigned TP to pixels where the year of maximum 

disturbance suitably matched the harvest timing, the 

harvest area correctly detected by CCDC increased by 

252 ha or 0.5% of the total area of harvest polygons. 

Overall, we found that pixels with repeat disturbances 

were rare and had little influence on our results and no 

meaningful impact on our broader conclusions.

Implications for Further Algorithm 
Development

For several reasons, our ground-truthing results are 

best interpreted in a relative context and should not 

construed as absolute measures of algorithm perform-

ance or quality. Our assessment of their off-the-shelf 

accuracy is not meant to be indicative of their poten-

tial performance with more training and tuning, but 

instead to represent the nature of outputs that a novice 

user, such as a resource manager or regulatory officer, 

might generate and attempt to interpret.

In fact, because these algorithms were not developed 

with the specific goal of detecting harvests in working 

forests of the eastern US, it was reasonable to expect 

their performance may be lacking, and that substantial 

gains in performance could be realized with more fo-

cused training and tuning efforts. In this case, CCDC 

was developed for mixed land cover types of coastal 

New England and LT-GEE was developed for the dense 

coniferous forests of the Pacific Northwest (Kennedy 

et al. 2010, Zhu & Woodcock 2014). Although similar 

in terms of methodological approach and recent appli-

cations in forest change detection, CCDC and LT-GEE 

were initially developed for the different (but closely 

related) objectives of land use/land cover change and 

forest landscape dynamics, respectively. By contrast, 

LCMS is an ensemble prediction based on LT-GEE and 

CCDC outputs that used nationwide calibration data, 

but to date has not been specifically tuned for eastern 

deciduous forests, including our study area in New 

York (Housman et  al. 2021). Landsat-based change 

detection algorithms perform best when calibrated for 

a specific location and set of forest conditions (Cohen 

et al. 2018).

Looking forward, we recommend the redoubling 

of efforts to train and tune these algorithms for moni-

toring US Northeast working forests and offer our 

enthusiastic and practical support for developers and 

others seeking to do so. Such investments of time and 

expertise are needed to ensure that large-scale carbon 

accounting programs are reliable and that working 

forest landowners and landscapes are monitored ac-

curately and fairly. We expect that attribution of 

natural versus harvest-related disturbances will be es-

pecially challenging in the eastern US forest landscape, 
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especially at lower harvest intensities, where pre-

scriptions such as group selection are likely to visu-

ally mimic natural gap-phase dynamics in unmanaged 

stands. Here, reliable attribution of the causal factors 

behind a canopy disturbance could require a more so-

phisticated analysis that compares patterns of change 

between working forests and unmanaged reserves. 

Collaborations between scientists and forest land-

owners, such as we have developed here, that facilitate 

sharing of harvest records as ground-truth data will be 

essential to such efforts.

Conclusion

Change detection algorithms based on satellite im-

agery are powerful tools for detecting forest change, 

but their ability to accurately monitor harvest op-

erations and outcomes in working forests of the 

US Northeast has been little tested. Our ground-

truthing analysis based on harvest records from over 

43,000 ha of Adirondack (New York) working for-

ests found that off-the-shelf performance of three 

freely available algorithms was widely variable but 

generally unsatisfactory especially for detection of 

partial harvesting practices common in the region. 

Of the algorithms that we evaluated, LT-GEE per-

formed consistently best in detecting harvesting 

disturbance across different prescription types and 

in explaining variability in harvest intensity (based 

on pulpwood removals). Even so, LT-GEE’s average 

rates of harvest detection were under 50% (by 

area). The other algorithms performed similarly to 

LT-GEE for clearcuts but largely failed to detect the 

much more common types of partial harvests such 

as shelterwoods and thinnings. Our results suggest 

that focused training and tuning efforts are needed 

prior to using these algorithms for monitoring the 

working forest landscapes of the US Northeast.
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