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To Explain or to Predict?
Galit Shmueli

Abstract. Statistical modeling is a powerful tool for developing and testing
theories by way of causal explanation, prediction, and description. In many
disciplines there is near-exclusive use of statistical modeling for causal ex-
planation and the assumption that models with high explanatory power are
inherently of high predictive power. Conflation between explanation and pre-
diction is common, yet the distinction must be understood for progressing
scientific knowledge. While this distinction has been recognized in the phi-
losophy of science, the statistical literature lacks a thorough discussion of the
many differences that arise in the process of modeling for an explanatory ver-
sus a predictive goal. The purpose of this article is to clarify the distinction
between explanatory and predictive modeling, to discuss its sources, and to
reveal the practical implications of the distinction to each step in the model-
ing process.

Key words and phrases: Explanatory modeling, causality, predictive mod-
eling, predictive power, statistical strategy, data mining, scientific research.

1. INTRODUCTION

Looking at how statistical models are used in dif-
ferent scientific disciplines for the purpose of theory
building and testing, one finds a range of perceptions
regarding the relationship between causal explanation
and empirical prediction. In many scientific fields such
as economics, psychology, education, and environmen-
tal science, statistical models are used almost exclu-
sively for causal explanation, and models that possess
high explanatory power are often assumed to inher-
ently possess predictive power. In fields such as natural
language processing and bioinformatics, the focus is on
empirical prediction with only a slight and indirect re-
lation to causal explanation. And yet in other research
fields, such as epidemiology, the emphasis on causal
explanation versus empirical prediction is more mixed.
Statistical modeling for description, where the purpose
is to capture the data structure parsimoniously, and
which is the most commonly developed within the field
of statistics, is not commonly used for theory building
and testing in other disciplines. Hence, in this article I
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focus on the use of statistical modeling for causal ex-
planation and for prediction. My main premise is that
the two are often conflated, yet the causal versus pre-
dictive distinction has a large impact on each step of the
statistical modeling process and on its consequences.
Although not explicitly stated in the statistics method-
ology literature, applied statisticians instinctively sense
that predicting and explaining are different. This article
aims to fill a critical void: to tackle the distinction be-
tween explanatory modeling and predictive modeling.

Clearing the current ambiguity between the two is
critical not only for proper statistical modeling, but
more importantly, for proper scientific usage. Both ex-
planation and prediction are necessary for generating
and testing theories, yet each plays a different role in
doing so. The lack of a clear distinction within statistics
has created a lack of understanding in many disciplines
of the difference between building sound explanatory
models versus creating powerful predictive models, as
well as confusing explanatory power with predictive
power. The implications of this omission and the lack
of clear guidelines on how to model for explanatory
versus predictive goals are considerable for both scien-
tific research and practice and have also contributed to
the gap between academia and practice.

I start by defining what I term explaining and pre-

dicting. These definitions are chosen to reflect the dis-
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tinct scientific goals that they are aimed at: causal ex-
planation and empirical prediction, respectively. Ex-

planatory modeling and predictive modeling reflect the
process of using data and statistical (or data mining)
methods for explaining or predicting, respectively. The
term modeling is intentionally chosen over models to
highlight the entire process involved, from goal defini-
tion, study design, and data collection to scientific use.

1.1 Explanatory Modeling

In many scientific fields, and especially the social
sciences, statistical methods are used nearly exclu-
sively for testing causal theory. Given a causal theo-
retical model, statistical models are applied to data in
order to test causal hypotheses. In such models, a set
of underlying factors that are measured by variables X

are assumed to cause an underlying effect, measured
by variable Y . Based on collaborative work with social
scientists and economists, on an examination of some
of their literature, and on conversations with a diverse
group of researchers, I conjecture that, whether statis-
ticians like it or not, the type of statistical models used
for testing causal hypotheses in the social sciences are
almost always association-based models applied to ob-
servational data. Regression models are the most com-
mon example. The justification for this practice is that
the theory itself provides the causality. In other words,
the role of the theory is very strong and the reliance
on data and statistical modeling are strictly through the
lens of the theoretical model. The theory–data relation-
ship varies in different fields. While the social sciences
are very theory-heavy, in areas such as bioinformat-
ics and natural language processing the emphasis on
a causal theory is much weaker. Hence, given this re-
ality, I define explaining as causal explanation and ex-

planatory modeling as the use of statistical models for
testing causal explanations.

To illustrate how explanatory modeling is typically
done, I describe the structure of a typical article in a
highly regarded journal in the field of Information Sys-
tems (IS). Researchers in the field of IS usually have
training in economics and/or the behavioral sciences.
The structure of articles reflects the way empirical re-
search is conducted in IS and related fields.

The example used is an article by Gefen, Karahanna
and Straub (2003), which studies technology accep-
tance. The article starts with a presentation of the pre-
vailing relevant theory(ies):

Online purchase intensions should be ex-
plained in part by the technology accep-
tance model (TAM). This theoretical model
is at present a preeminent theory of technol-
ogy acceptance in IS.

The authors then proceed to state multiple causal hy-
potheses (denoted H1,H2, . . . in Figure 1, right panel),
justifying the merits for each hypothesis and ground-
ing it in theory. The research hypotheses are given in
terms of theoretical constructs rather than measurable
variables. Unlike measurable variables, constructs are
abstractions that “describe a phenomenon of theoreti-
cal interest” (Edwards and Bagozzi, 2000) and can be
observable or unobservable. Examples of constructs in
this article are trust, perceived usefulness (PU), and
perceived ease of use (PEOU). Examples of constructs
used in other fields include anger, poverty, well-being,
and odor. The hypotheses section will often include a
causal diagram illustrating the hypothesized causal re-
lationship between the constructs (see Figure 1, left
panel). The next step is construct operationalization,
where a bridge is built between theoretical constructs
and observable measurements, using previous litera-
ture and theoretical justification. Only after the theo-
retical component is completed, and measurements are
justified and defined, do researchers proceed to the next

FIG. 1. Causal diagram (left) and partial list of stated hypotheses (right) from Gefen, Karahanna and Straub (2003).
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step where data and statistical modeling are introduced
alongside the statistical hypotheses, which are opera-
tionalized from the research hypotheses. Statistical in-
ference will lead to “statistical conclusions” in terms of
effect sizes and statistical significance in relation to the
causal hypotheses. Finally, the statistical conclusions
are converted into research conclusions, often accom-
panied by policy recommendations.

In summary, explanatory modeling refers here to
the application of statistical models to data for test-
ing causal hypotheses about theoretical constructs.
Whereas “proper” statistical methodology for testing
causality exists, such as designed experiments or spe-
cialized causal inference methods for observational
data [e.g., causal diagrams (Pearl, 1995), discovery
algorithms (Spirtes, Glymour and Scheines, 2000),
probability trees (Shafer, 1996), and propensity scores
(Rosenbaum and Rubin, 1983; Rubin, 1997)], in prac-
tice association-based statistical models, applied to ob-
servational data, are most commonly used for that pur-
pose.

1.2 Predictive Modeling

I define predictive modeling as the process of apply-
ing a statistical model or data mining algorithm to data
for the purpose of predicting new or future observa-
tions. In particular, I focus on nonstochastic prediction
(Geisser, 1993, page 31), where the goal is to predict
the output value (Y ) for new observations given their
input values (X). This definition also includes temporal
forecasting, where observations until time t (the input)
are used to forecast future values at time t + k, k > 0
(the output). Predictions include point or interval pre-
dictions, prediction regions, predictive distributions, or
rankings of new observations. Predictive model is any
method that produces predictions, regardless of its un-
derlying approach: Bayesian or frequentist, parametric
or nonparametric, data mining algorithm or statistical
model, etc.

1.3 Descriptive Modeling

Although not the focus of this article, a third type of
modeling, which is the most commonly used and de-
veloped by statisticians, is descriptive modeling. This
type of modeling is aimed at summarizing or repre-
senting the data structure in a compact manner. Un-
like explanatory modeling, in descriptive modeling the
reliance on an underlying causal theory is absent or in-
corporated in a less formal way. Also, the focus is at the
measurable level rather than at the construct level. Un-
like predictive modeling, descriptive modeling is not

aimed at prediction. Fitting a regression model can be
descriptive if it is used for capturing the association be-
tween the dependent and independent variables rather
than for causal inference or for prediction. We mention
this type of modeling to avoid confusion with causal-
explanatory and predictive modeling, and also to high-
light the different approaches of statisticians and non-
statisticians.

1.4 The Scientific Value of Predictive Modeling

Although explanatory modeling is commonly used
for theory building and testing, predictive modeling is
nearly absent in many scientific fields as a tool for de-
veloping theory. One possible reason is the statistical
training of nonstatistician researchers. A look at many
introductory statistics textbooks reveals very little in
the way of prediction. Another reason is that prediction
is often considered unscientific. Berk (2008) wrote, “In
the social sciences, for example, one either did causal
modeling econometric style or largely gave up quan-
titative work.” From conversations with colleagues in
various disciplines it appears that predictive modeling
is often valued for its applied utility, yet is discarded for
scientific purposes such as theory building or testing.
Shmueli and Koppius (2010) illustrated the lack of pre-
dictive modeling in the field of IS. Searching the 1072
papers published in the two top-rated journals Infor-

mation Systems Research and MIS Quarterly between
1990 and 2006, they found only 52 empirical papers
with predictive claims, of which only seven carried out
proper predictive modeling or testing.

Even among academic statisticians, there appears to
be a divide between those who value prediction as the
main purpose of statistical modeling and those who see
it as unacademic. Examples of statisticians who em-
phasize predictive methodology include Akaike (“The
predictive point of view is a prototypical point of view
to explain the basic activity of statistical analysis” in
Findley and Parzen, 1998), Deming (“The only use-
ful function of a statistician is to make predictions”
in Wallis, 1980), Geisser (“The prediction of observ-
ables or potential observables is of much greater rel-
evance than the estimate of what are often artificial
constructs-parameters,” Geisser, 1975), Aitchison and
Dunsmore (“prediction analysis. . . is surely at the heart
of many statistical applications,” Aitchison and Dun-
smore, 1975) and Friedman (“One of the most com-
mon and important uses for data is prediction,” Fried-
man, 1997). Examples of those who see it as unacad-
emic are Kendall and Stuart (“The Science of Statistics
deals with the properties of populations. In considering
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a population of men we are not interested, statistically
speaking, in whether some particular individual has
brown eyes or is a forger, but rather in how many of the
individuals have brown eyes or are forgers,” Kendall
and Stuart, 1977) and more recently Parzen (“The two
goals in analyzing data. . . I prefer to describe as “man-
agement” and “science.” Management seeks profit. . .
Science seeks truth,” Parzen, 2001). In economics there
is a similar disagreement regarding “whether predic-
tion per se is a legitimate objective of economic sci-
ence, and also whether observed data should be used
only to shed light on existing theories or also for the
purpose of hypothesis seeking in order to develop new
theories” (Feelders, 2002).

Before proceeding with the discrimination between
explanatory and predictive modeling, it is important to
establish prediction as a necessary scientific endeavor
beyond utility, for the purpose of developing and test-
ing theories. Predictive modeling and predictive testing
serve several necessary scientific functions:

1. Newly available large and rich datasets often con-
tain complex relationships and patterns that are hard
to hypothesize, especially given theories that ex-
clude newly measurable concepts. Using predic-
tive modeling in such contexts can help uncover
potential new causal mechanisms and lead to the
generation of new hypotheses. See, for example,
the discussion between Gurbaxani and Mendelson
(1990, 1994) and Collopy, Adya and Armstrong
(1994).

2. The development of new theory often goes hand in
hand with the development of new measures (Van
Maanen, Sorensen and Mitchell, 2007). Predictive
modeling can be used to discover new measures as
well as to compare different operationalizations of
constructs and different measurement instruments.

3. By capturing underlying complex patterns and re-
lationships, predictive modeling can suggest im-
provements to existing explanatory models.

4. Scientific development requires empirically rigor-
ous and relevant research. Predictive modeling en-
ables assessing the distance between theory and
practice, thereby serving as a “reality check” to
the relevance of theories.1 While explanatory power
provides information about the strength of an under-
lying causal relationship, it does not imply its pre-
dictive power.

1Predictive models are advantageous in terms of negative em-
piricism: a model either predicts accurately or it does not, and this
can be observed. In contrast, explanatory models can never be con-
firmed and are harder to contradict.

5. Predictive power assessment offers a straightfor-
ward way to compare competing theories by ex-
amining the predictive power of their respective ex-
planatory models.

6. Predictive modeling plays an important role in
quantifying the level of predictability of measurable
phenomena by creating benchmarks of predictive
accuracy (Ehrenberg and Bound, 1993). Knowledge
of un-predictability is a fundamental component of
scientific knowledge (see, e.g., Taleb, 2007). Be-
cause predictive models tend to have higher predic-
tive accuracy than explanatory statistical models,
they can give an indication of the potential level
of predictability. A very low predictability level
can lead to the development of new measures, new
collected data, and new empirical approaches. An
explanatory model that is close to the predictive
benchmark may suggest that our understanding of
that phenomenon can only be increased marginally.
On the other hand, an explanatory model that is very
far from the predictive benchmark would imply that
there are substantial practical and theoretical gains
to be had from further scientific development.

For a related, more detailed discussion of the value
of prediction to scientific theory development see the
work of Shmueli and Koppius (2010).

1.5 Explaining and Predicting Are Different

In the philosophy of science, it has long been de-
bated whether explaining and predicting are one or
distinct. The conflation of explanation and predic-
tion has its roots in philosophy of science litera-
ture, particularly the influential hypothetico-deductive
model (Hempel and Oppenheim, 1948), which explic-
itly equated prediction and explanation. However, as
later became clear, the type of uncertainty associated
with explanation is of a different nature than that as-
sociated with prediction (Helmer and Rescher, 1959).
This difference highlighted the need for developing
models geared specifically toward dealing with pre-
dicting future events and trends such as the Delphi
method (Dalkey and Helmer, 1963). The distinction
between the two concepts has been further elaborated
(Forster and Sober, 1994; Forster, 2002; Sober, 2002;
Hitchcock and Sober, 2004; Dowe, Gardner and Oppy,
2007). In his book Theory Building, Dubin (1969,
page 9) wrote:

Theories of social and human behavior ad-
dress themselves to two distinct goals of
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science: (1) prediction and (2) understand-
ing. It will be argued that these are separate
goals [. . . ] I will not, however, conclude that
they are either inconsistent or incompatible.

Herbert Simon distinguished between “basic science”
and “applied science” (Simon, 2001), a distinction sim-
ilar to explaining versus predicting. According to Si-
mon, basic science is aimed at knowing (“to describe
the world”) and understanding (“to provide explana-
tions of these phenomena”). In contrast, in applied sci-
ence, “Laws connecting sets of variables allow infer-
ences or predictions to be made from known values of
some of the variables to unknown values of other vari-
ables.”

Why should there be a difference between explaining
and predicting? The answer lies in the fact that measur-
able data are not accurate representations of their un-
derlying constructs. The operationalization of theories
and constructs into statistical models and measurable
data creates a disparity between the ability to explain
phenomena at the conceptual level and the ability to
generate predictions at the measurable level.

To convey this disparity more formally, consider a
theory postulating that construct X causes construct
Y , via the function F , such that Y = F (X ). F is of-
ten represented by a path model, a set of qualitative
statements, a plot (e.g., a supply and demand plot), or
mathematical formulas. Measurable variables X and Y

are operationalizations of X and Y , respectively. The
operationalization of F into a statistical model f , such
as E(Y ) = f (X), is done by considering F in light of
the study design (e.g., numerical or categorical Y ; hi-
erarchical or flat design; time series or cross-sectional;
complete or censored data) and practical considera-
tions such as standards in the discipline. Because F

is usually not sufficiently detailed to lead to a single f ,
often a set of f models is considered. Feelders (2002)
described this process in the field of economics. In the
predictive context, we consider only X, Y and f .

The disparity arises because the goal in explanatory
modeling is to match f and F as closely as possible
for the statistical inference to apply to the theoretical
hypotheses. The data X, Y are tools for estimating f ,
which in turn is used for testing the causal hypotheses.
In contrast, in predictive modeling the entities of inter-
est are X and Y , and the function f is used as a tool for
generating good predictions of new Y values. In fact,
we will see that even if the underlying causal relation-
ship is indeed Y = F (X ), a function other than f̂ (X)

and data other than X might be preferable for predic-
tion.

The disparity manifests itself in different ways. Four
major aspects are:

Causation–Association: In explanatory modeling f

represents an underlying causal function, and X is
assumed to cause Y . In predictive modeling f cap-
tures the association between X and Y .

Theory–Data: In explanatory modeling, f is care-
fully constructed based on F in a fashion that sup-
ports interpreting the estimated relationship between
X and Y and testing the causal hypotheses. In predic-
tive modeling, f is often constructed from the data.
Direct interpretability in terms of the relationship be-
tween X and Y is not required, although sometimes
transparency of f is desirable.

Retrospective–Prospective: Predictive modeling is
forward-looking, in that f is constructed for pre-
dicting new observations. In contrast, explanatory
modeling is retrospective, in that f is used to test an
already existing set of hypotheses.

Bias–Variance: The expected prediction error for a
new observation with value x, using a quadratic loss
function,2 is given by Hastie, Tibshirani and Fried-
man (2009, page 223)

EPE = E{Y − f̂ (x)}2

= E{Y − f (x)}2 + {E(f̂ (x)) − f (x)}2

(1)
+ E{f̂ (x) − E(f̂ (x))}2

= Var(Y ) + Bias2 + Var(f̂ (x)).

Bias is the result of misspecifying the statistical
model f . Estimation variance (the third term) is the
result of using a sample to estimate f . The first term
is the error that results even if the model is correctly
specified and accurately estimated. The above de-
composition reveals a source of the difference be-
tween explanatory and predictive modeling: In ex-
planatory modeling the focus is on minimizing bias
to obtain the most accurate representation of the
underlying theory. In contrast, predictive modeling
seeks to minimize the combination of bias and es-
timation variance, occasionally sacrificing theoreti-
cal accuracy for improved empirical precision. This
point is illustrated in the Appendix, showing that the
“wrong” model can sometimes predict better than
the correct one.

2For a binary Y , various 0–1 loss functions have been suggested
in place of the quadratic loss function (Domingos, 2000).
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The four aspects impact every step of the modeling
process, such that the resulting f is markedly different
in the explanatory and predictive contexts, as will be
shown in Section 2.

1.6 A Void in the Statistics Literature

The philosophical explaining/predicting debate has
not been directly translated into statistical language in
terms of the practical aspects of the entire statistical
modeling process.

A search of the statistics literature for discussion of
explaining versus predicting reveals a lively discussion
in the context of model selection, and in particular, the
derivation and evaluation of model selection criteria. In
this context, Konishi and Kitagawa (2007) wrote:

There may be no significant difference be-
tween the point of view of inferring the true
structure and that of making a prediction if
an infinitely large quantity of data is avail-
able or if the data are noiseless. However,
in modeling based on a finite quantity of
real data, there is a significant gap between
these two points of view, because an optimal
model for prediction purposes may be dif-
ferent from one obtained by estimating the
‘true model.’

The literature on this topic is vast, and we do not intend
to cover it here, although we discuss the major points
in Section 2.6.

The focus on prediction in the field of machine learn-
ing and by statisticians such as Geisser, Aitchison and
Dunsmore, Breiman and Friedman, has highlighted as-
pects of predictive modeling that are relevant to the ex-
planatory/prediction distinction, although they do not
directly contrast explanatory and predictive modeling.3

The prediction literature raises the importance of eval-
uating predictive power using holdout data, and the
usefulness of algorithmic methods (Breiman, 2001b).
The predictive focus has also led to the development
of inference tools that generate predictive distributions.
Geisser (1993) introduced “predictive inference” and
developed it mainly in a Bayesian context. “Predic-
tive likelihood” (see Bjornstad, 1990) is a likelihood-
based approach to predictive inference, and Dawid’s
prequential theory (Dawid, 1984) investigates infer-
ence concepts in terms of predictability. Finally, the

3Geisser distinguished between “[statistical] parameters” and
“observables” in terms of the objects of interest. His distinction
is closely related, but somewhat different from our distinction be-
tween theoretical constructs and measurements.

bias–variance aspect has been pivotal in data mining
for understanding the predictive performance of differ-
ent algorithms and for designing new ones.

Another area in statistics and econometrics that fo-
cuses on prediction is time series. Methods have been
developed specifically for testing the predictability of
a series [e.g., random walk tests or the concept of
Granger causality (Granger, 1969)], and evaluating
predictability by examining performance on holdout
data. The time series literature in statistics is dominated
by extrapolation models such as ARIMA-type models
and exponential smoothing methods, which are suit-
able for prediction and description, but not for causal
explanation. Causal models for time series are common
in econometrics (e.g., Song and Witt, 2000), where an
underlying causal theory links constructs, which lead
to operationalized variables, as in the cross-sectional
case. Yet, to the best of my knowledge, there is no
discussion in the statistics time series literature regard-
ing the distinction between predictive and explanatory
modeling, aside from the debate in economics regard-
ing the scientific value of prediction.

To conclude, the explanatory/predictive modeling
distinction has been discussed directly in the model se-
lection context, but not in the larger context. Areas that
focus on developing predictive modeling such as ma-
chine learning and statistical time series, and “predic-
tivists” such as Geisser, have considered prediction as a
separate issue, and have not discussed its principal and
practical distinction from causal explanation in terms
of developing and testing theory. The goal of this arti-
cle is therefore to examine the explanatory versus pre-
dictive debate from a statistical perspective, consider-
ing how modeling is used by nonstatistician scientists
for theory development.

The remainder of the article is organized as fol-
lows. In Section 2, I consider each step in the mod-
eling process in terms of the four aspects of the pre-
dictive/explanatory modeling distinction: causation–

association, theory–data, retrospective–prospective

and bias–variance. Section 3 illustrates some of these
differences via two examples. A discussion of the im-
plications of the predict/explain conflation, conclu-
sions, and recommendations are given in Section 4.

2. TWO MODELING PATHS

In the following I examine the process of statisti-
cal modeling through the explain/predict lens, from
goal definition to model use and reporting. For clar-
ity, I broke down the process into a generic set of steps,
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FIG. 2. Steps in the statistical modeling process.

as depicted in Figure 2. In each step I point out differ-
ences in the choice of methods, criteria, data, and infor-
mation to consider when the goal is predictive versus
explanatory. I also briefly describe the related statis-
tics literature. The conceptual and practical differences
invariably lead to a difference between a final explana-
tory model and a predictive one, even though they may
use the same initial data. Thus, a priori determination
of the main study goal as either explanatory or pre-
dictive4 is essential to conducting adequate modeling.
The discussion in this section assumes that the main re-
search goal has been determined as either explanatory
or predictive.

2.1 Study Design and Data Collection

Even at the early stages of study design and data
collection, issues of what and how much data to col-
lect, according to what design, and which collection
instrument to use are considered differently for predic-
tion versus explanation. Consider sample size. In ex-
planatory modeling, where the goal is to estimate the
theory-based f with adequate precision and to use it
for inference, statistical power is the main consider-
ation. Reducing bias also requires sufficient data for
model specification testing. Beyond a certain amount
of data, however, extra precision is negligible for pur-
poses of inference. In contrast, in predictive modeling,
f itself is often determined from the data, thereby re-
quiring a larger sample for achieving lower bias and
variance. In addition, more data are needed for creating
holdout datasets (see Section 2.2). Finally, predicting
new individual observations accurately, in a prospec-
tive manner, requires more data than retrospective in-
ference regarding population-level parameters, due to
the extra uncertainty.

A second design issue is sampling scheme. For
instance, in the context of hierarchical data (e.g.,
sampling students within schools) Afshartous and de
Leeuw (2005) noted, “Although there exists an exten-
sive literature on estimation issues in multilevel mod-
els, the same cannot be said with respect to prediction.”

4The main study goal can also be descriptive.

Examining issues of sample size, sample allocation,
and multilevel modeling for the purpose of “predicting
a future observable y∗j in the J th group of a hierar-
chial dataset,” they found that allocation for estimation
versus prediction should be different: “an increase in
group size n is often more beneficial with respect to
prediction than an increase in the number of groups
J . . . [whereas] estimation is more improved by increas-
ing the number of groups J instead of the group size
n.” This relates directly to the bias–variance aspect.
A related issue is the choice of f in relation to sam-
pling scheme. Afshartous and de Leeuw (2005) found
that for their hierarchical data, a hierarchical f , which
is more appropriate theoretically, had poorer predictive
performance than a nonhierarchical f .

A third design consideration is the choice between
experimental and observational settings. Whereas for
causal explanation experimental data are greatly pre-
ferred, subject to availability and resource constraints,
in prediction sometimes observational data are prefer-
able to “overly clean” experimental data, if they bet-
ter represent the realistic context of prediction in terms
of the uncontrolled factors, the noise, the measured re-
sponse, etc. This difference arises from the theory–data
and prospective–retrospective aspects. Similarly, when
choosing between primary data (data collected for the
purpose of the study) and secondary data (data col-
lected for other purposes), the classic criteria of data re-
cency, relevance, and accuracy (Patzer, 1995) are con-
sidered from a different angle. For example, a predic-
tive model requires the secondary data to include the
exact X, Y variables to be used at the time of predic-
tion, whereas for causal explanation different opera-
tionalizations of the constructs X , Y may be accept-
able.

In terms of the data collection instrument, whereas
in explanatory modeling the goal is to obtain a reliable
and valid instrument such that the data obtained rep-
resent the underlying construct adequately (e.g., item
response theory in psychometrics), for predictive pur-
poses it is more important to focus on the measurement
quality and its meaning in terms of the variable to be
predicted.



296 G. SHMUELI

Finally, consider the field of design of experiments:
two major experimental designs are factorial designs
and response surface methodology (RSM) designs.
The former is focused on causal explanation in terms
of finding the factors that affect the response. The lat-
ter is aimed at prediction—finding the combination of
predictors that optimizes Y . Factorial designs employ
a linear f for interpretability, whereas RSM designs
use optimization techniques and estimate a nonlinear
f from the data, which is less interpretable but more
predictively accurate.5

2.2 Data Preparation

We consider two common data preparation opera-
tions: handling missing values and data partitioning.

2.2.1 Handling missing values. Most real datasets
consist of missing values, thereby requiring one to
identify the missing values, to determine the extent and
type of missingness, and to choose a course of action
accordingly. Although a rich literature exists on data
imputation, it is monopolized by an explanatory con-
text. In predictive modeling, the solution strongly de-
pends on whether the missing values are in the training
data and/or the data to be predicted. For example, Sarle
(1998) noted:

If you have only a small proportion of cases
with missing data, you can simply throw out
those cases for purposes of estimation; if
you want to make predictions for cases with
missing inputs, you don’t have the option of
throwing those cases out.

Sarle further listed imputation methods that are use-
ful for explanatory purposes but not for predictive pur-
poses and vice versa. One example is using regression
models with dummy variables that indicate missing-
ness, which is considered unsatisfactory in explana-
tory modeling, but can produce excellent predictions.
The usefulness of creating missingness dummy vari-
ables was also shown by Ding and Simonoff (2010).
In particular, whereas the classic explanatory ap-
proach is based on the Missing-At-Random, Missing-
Completely-At-Random or Not-Missing-At-Random
classification (Little and Rubin, 2002), Ding and Si-
monoff (2010) showed that for predictive purposes the
important distinction is whether the missingness de-
pends on Y or not. They concluded:

5I thank Douglas Montgomery for this insight.

In the context of classification trees, the re-
lationship between the missingness and the
dependent variable, rather than the standard
missingness classification approach of Lit-
tle and Rubin (2002). . . is the most help-
ful criterion to distinguish different missing
data methods.

Moreover, missingness can be a blessing in a predic-
tive context, if it is sufficiently informative of Y (e.g.,
missingness in financial statements when the goal is to
predict fraudulent reporting).

Finally, a completely different approach for handling
missing data for prediction, mentioned by Sarle (1998)
and further developed by Saar-Tsechansky and Provost
(2007), considers the case where to-be-predicted obser-
vations are missing some predictor information, such
that the missing information can vary across different
observations. The proposed solution is to estimate mul-
tiple “reduced” models, each excluding some predic-
tors. When predicting an observation with missingness
on a certain set of predictors, the model that excludes
those predictors is used. This approach means that dif-
ferent reduced models are created for different obser-
vations. Although useful for prediction, it is clearly in-
appropriate for causal explanation.

2.2.2 Data partitioning. A popular solution for
avoiding overoptimistic predictive accuracy is to evalu-
ate performance not on the training set, that is, the data
used to build the model, but rather on a holdout sample
which the model “did not see.” The creation of a hold-
out sample can be achieved in various ways, the most
commonly used being a random partition of the sample
into training and holdout sets. A popular alternative,
especially with scarce data, is cross-validation. Other
alternatives are resampling methods, such as bootstrap,
which can be computationally intensive but avoid “bad
partitions” and enable predictive modeling with small
datasets.

Data partitioning is aimed at minimizing the com-
bined bias and variance by sacrificing some bias in re-
turn for a reduction in sampling variance. A smaller
sample is associated with higher bias when f is es-
timated from the data, which is common in predic-
tive modeling but not in explanatory modeling. Hence,
data partitioning is useful for predictive modeling but
less so for explanatory modeling. With today’s abun-
dance of large datasets, where the bias sacrifice is prac-
tically small, data partitioning has become a standard
preprocessing step in predictive modeling.
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In explanatory modeling, data partitioning is less
common because of the reduction in statistical power.
When used, it is usually done for the retrospective pur-
pose of assessing the robustness of f̂ . A rarer yet im-
portant use of data partitioning in explanatory model-
ing is for strengthening model validity, by demonstrat-
ing some predictive power. Although one would not
expect an explanatory model to be optimal in terms of
predictive power, it should show some degree of accu-
racy (see discussion in Section 4.2).

2.3 Exploratory Data Analysis

Exploratory data analysis (EDA) is a key initial step
in both explanatory and predictive modeling. It consists
of summarizing the data numerically and graphically,
reducing their dimension, and “preparing” for the more
formal modeling step. Although the same set of tools
can be used in both cases, they are used in a different
fashion. In explanatory modeling, exploration is chan-
neled toward the theoretically specified causal relation-
ships, whereas in predictive modeling EDA is used in
a more free-form fashion, supporting the purpose of
capturing relationships that are perhaps unknown or at
least less formally formulated.

One example is how data visualization is carried out.
Fayyad, Grinstein and Wierse (2002, page 22) con-
trasted “exploratory visualization” with “confirmatory
visualization”:

Visualizations can be used to explore data,
to confirm a hypothesis, or to manipulate
a viewer. . . In exploratory visualization the
user does not necessarily know what he is
looking for. This creates a dynamic scenario
in which interaction is critical. . . In a confir-
matory visualization, the user has a hypoth-
esis that needs to be tested. This scenario is
more stable and predictable. System para-
meters are often predetermined.

Hence, interactivity, which supports exploration across
a wide and sometimes unknown terrain, is very useful
for learning about measurement quality and associa-
tions that are at the core of predictive modeling, but
much less so in explanatory modeling, where the data
are visualized through the theoretical lens.

A second example is numerical summaries. In a pre-
dictive context, one might explore a wide range of nu-
merical summaries for all variables of interest, whereas
in an explanatory model, the numerical summaries
would focus on the theoretical relationships. For ex-
ample, in order to assess the role of a certain variable

as a mediator, its correlation with the response variable
and with other covariates is examined by generating
specific correlation tables.

A third example is the use of EDA for assessing as-
sumptions of potential models (e.g., normality or mul-
ticollinearity) and exploring possible variable transfor-
mations. Here, too, an explanatory context would be
more restrictive in terms of the space explored.

Finally, dimension reduction is viewed and used dif-
ferently. In predictive modeling, a reduction in the
number of predictors can help reduce sampling vari-
ance. Hence, methods such as principal components
analysis (PCA) or other data compression methods that
are even less interpretable (e.g., singular value decom-
position) are often carried out initially. They may later
lead to the use of compressed variables (such as the
first few components) as predictors, even if those are
not easily interpretable. PCA is also used in explana-
tory modeling, but for a different purpose. For ques-
tionnaire data, PCA and exploratory factor analysis are
used to determine the validity of the survey instrument.
The resulting factors are expected to correspond to the
underlying constructs. In fact, the rotation step in fac-
tor analysis is specifically aimed at making the factors
more interpretable. Similarly, correlations are used for
assessing the reliability of the survey instrument.

2.4 Choice of Variables

The criteria for choosing variables differ markedly
in explanatory versus predictive contexts.

In explanatory modeling, where variables are seen
as operationalized constructs, variable choice is based
on the role of the construct in the theoretical causal
structure and on the operationalization itself. A broad
terminology related to different variable roles exists
in various fields: in the social sciences—antecedent,

consequent, mediator and moderator6 variables; in
pharmacology and medical sciences—treatment and
control variables; and in epidemiology—exposure and
confounding variables. Carte and Craig (2003) men-
tioned that explaining moderating effects has become
an important scientific endeavor in the field of Man-
agement Information Systems. Another important term
common in economics is endogeneity or “reverse cau-
sation,” which results in biased parameter estimates.
Endogeneity can occur due to different reasons. One

6“A moderator variable is one that influences the strength of a
relationship between two other variables, and a mediator variable is
one that explains the relationship between the two other variables”
(from http://psych.wisc.edu/henriques/mediator.html).

http://psych.wisc.edu/henriques/mediator.html
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reason is incorrectly omitting an input variable, say
Z, from f when the causal construct Z is assumed to
cause X and Y . In a regression model of Y on X, the
omission of Z results in X being correlated with the er-
ror term. Winkelmann (2008) gave the example of a hy-
pothesis that health insurance (X ) affects the demand
for health services Y . The operationalized variables are
“health insurance status” (X) and “number of doctor
consultations” (Y ). Omitting an input measurement Z

for “true health status” (Z ) from the regression model
f causes endogeneity because X can be determined by
Y (i.e., reverse causation), which manifests as X being
correlated with the error term in f . Endogeneity can
arise due to other reasons such as measurement error
in X. Because of the focus in explanatory modeling on
causality and on bias, there is a vast literature on detect-
ing endogeneity and on solutions such as constructing
instrumental variables and using models such as two-
stage-least-squares (2SLS). Another related term is si-

multaneous causality, which gives rise to special mod-
els such as Seemingly Unrelated Regression (SUR)
(Zellner, 1962). In terms of chronology, a causal ex-
planatory model can include only “control” variables
that take place before the causal variable (Gelman et
al., 2003). And finally, for reasons of model identifia-
bility (i.e., given the statistical model, each causal ef-
fect can be identified), one is required to include main
effects in a model that contains an interaction term be-
tween those effects. We note this practice because it is
not necessary or useful in the predictive context, due to
the acceptability of uninterpretable models and the po-
tential reduction in sampling variance when dropping
predictors (see, e.g., the Appendix).

In predictive modeling, the focus on association
rather than causation, the lack of F , and the prospec-
tive context, mean that there is no need to delve into
the exact role of each variable in terms of an underly-
ing causal structure. Instead, criteria for choosing pre-
dictors are quality of the association between the pre-
dictors and the response, data quality, and availabil-
ity of the predictors at the time of prediction, known
as ex-ante availability. In terms of ex-ante availability,
whereas chronological precedence of X to Y is nec-
essary in causal models, in predictive models not only
must X precede Y , but X must be available at the time
of prediction. For instance, explaining wine quality ret-
rospectively would dictate including barrel characteris-
tics as a causal factor. The inclusion of barrel charac-
teristics in a predictive model of future wine quality
would be impossible if at the time of prediction the
grapes are still on the vine. See the eBay example in
Section 3.2 for another example.

2.5 Choice of Methods

Considering the four aspects of causation–associa-
tion, theory–data, retrospective–prospective and bias–
variance leads to different choices of plausible meth-
ods, with a much larger array of methods useful for pre-
diction. Explanatory modeling requires interpretable
statistical models f that are easily linked to the un-
derlying theoretical model F . Hence the popularity of
statistical models, and especially regression-type meth-
ods, in many disciplines. Algorithmic methods such
as neural networks or k-nearest-neighbors, and unin-
terpretable nonparametric models, are considered ill-
suited for explanatory modeling.

In predictive modeling, where the top priority is
generating accurate predictions of new observations
and f is often unknown, the range of plausible meth-
ods includes not only statistical models (interpretable
and uninterpretable) but also data mining algorithms.
A neural network algorithm might not shed light on an
underlying causal mechanism F or even on f , but it
can capture complicated associations, thereby leading
to accurate predictions. Although model transparency
might be important in some cases, it is of secondary
importance: “Using complex predictors may be un-
pleasant, but the soundest path is to go for predictive
accuracy first, then try to understand why” (Breiman,
2001b).

Breiman (2001b) accused the statistical community
of ignoring algorithmic modeling:

There are two cultures in the use of sta-
tistical modeling to reach conclusions from
data. One assumes that the data are gener-
ated by a given stochastic data model. The
other uses algorithmic models and treats the
data mechanism as unknown. The statisti-
cal community has been committed to the
almost exclusive use of data models.

From the explanatory/predictive view, algorithmic
modeling is indeed very suitable for predictive (and
descriptive) modeling, but not for explanatory model-
ing.

Some methods are not suitable for prediction from
the retrospective–prospective aspect, especially in time
series forecasting. Models with coincident indicators,
which are measured simultaneously, are such a class.
An example is the model Airfaret = f (OilPricet ),
which might be useful for explaining the effect of oil
price on airfare based on a causal theory, but not for
predicting future airfare because the oil price at the
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time of prediction is unknown. For prediction, alterna-
tive models must be considered, such as using a lagged
OilPrice variable, or creating a separate model for fore-
casting oil prices and plugging its forecast into the air-
fare model. Another example is the centered moving
average, which requires the availability of data during
a time window before and after a period of interest, and
is therefore not useful for prediction.

Lastly, the bias–variance aspect raises two classes
of methods that are very useful for prediction, but not
for explanation. The first is shrinkage methods such as
ridge regression, principal components regression, and
partial least squares regression, which “shrink” predic-
tor coefficients or even eliminate them, thereby intro-
ducing bias into f , for the purpose of reducing esti-
mation variance. The second class of methods, which
“have been called the most influential development in
Data Mining and Machine Learning in the past decade”
(Seni and Elder, 2010, page vi), are ensemble meth-
ods such as bagging (Breiman, 1996), random forests
(Breiman, 2001a), boosting7 (Schapire, 1999), varia-
tions of those methods, and Bayesian alternatives (e.g.,
Brown, Vannucci and Fearn, 2002). Ensembles com-
bine multiple models to produce more precise predic-
tions by averaging predictions from different models,
and have proven useful in numerous applications (see
the Netflix Prize example in Section 3.1).

2.6 Validation, Model Evaluation and Model

Selection

Choosing the final model among a set of models,
validating it, and evaluating its performance, differ
markedly in explanatory and predictive modeling. Al-
though the process is iterative, I separate it into three
components for ease of exposition.

2.6.1 Validation. In explanatory modeling, valida-
tion consists of two parts: model validation validates
that f adequately represents F , and model fit validates
that f̂ fits the data {X,Y }. In contrast, validation in pre-
dictive modeling is focused on generalization, which is
the ability of f̂ to predict new data {Xnew, Ynew}.

Methods used in explanatory modeling for model
validation include model specification tests such as
the popular Hausman specification test in econometrics
(Hausman, 1978), and construct validation techniques
such as reliability and validity measures of survey

7Although boosting algorithms were developed as ensemble
methods, “[they can] be seen as an interesting regularization
scheme for estimating a model” (Bohlmann and Hothorn, 2007).

questions and factor analysis. Inference for individual
coefficients is also used for detecting over- or under-
specification. Validating model fit involves goodness-
of-fit tests (e.g., normality tests) and model diagnostics
such as residual analysis. Although indications of lack
of fit might lead researchers to modify f , modifications
are made carefully in light of the relationship with F

and the constructs X , Y .
In predictive modeling, the biggest danger to gener-

alization is overfitting the training data. Hence valida-
tion consists of evaluating the degree of overfitting, by
comparing the performance of f̂ on the training and
holdout sets. If performance is significantly better on
the training set, overfitting is implied.

Not only is the large context of validation markedly
different in explanatory and predictive modeling, but
so are the details. For example, checking for multi-
collinearity is a standard operation in assessing model
fit. This practice is relevant in explanatory modeling,
where multicollinearity can lead to inflated standard er-
rors, which interferes with inference. Therefore, a vast
literature exists on strategies for identifying and re-
ducing multicollinearity, variable selection being one
strategy. In contrast, for predictive purposes “multi-
collinearity is not quite as damning” (Vaughan and
Berry, 2005). Makridakis, Wheelwright and Hyndman
(1998, page 288) distinguished between the role of
multicollinearity in explaining versus its role in pre-
dicting:

Multicollinearity is not a problem unless ei-
ther (i) the individual regression coefficients
are of interest, or (ii) attempts are made to
isolate the contribution of one explanatory
variable to Y, without the influence of the
other explanatory variables. Multicollinear-
ity will not affect the ability of the model to
predict.

Another example is the detection of influential ob-
servations. While classic methods are aimed at detect-
ing observations that are influential in terms of model
estimation, Johnson and Geisser (1983) proposed a
method for detecting influential observations in terms
of their effect on the predictive distribution.

2.6.2 Model evaluation. Consider two performance
aspects of a model: explanatory power and predic-
tive power. The top priority in terms of model perfor-
mance in explanatory modeling is assessing explana-

tory power, which measures the strength of relation-

ship indicated by f̂ . Researchers report R2-type values
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and statistical significance of overall F -type statistics
to indicate the level of explanatory power.

In contrast, in predictive modeling, the focus is on
predictive accuracy or predictive power, which refer to
the performance of f̂ on new data. Measures of pre-
dictive power are typically out-of-sample metrics or
their in-sample approximations, which depend on the
type of required prediction. For example, predictions
of a binary Y could be binary classifications (Ŷ = 0,1),
predicted probabilities of a certain class [P̂ (Y = 1)], or
rankings of those probabilities. The latter are common
in marketing and personnel psychology. These three
different types of predictions would warrant different
performance metrics. For example, a model can per-
form poorly in producing binary classifications but ad-
equately in producing rankings. Moreover, in the con-
text of asymmetric costs, where costs are heftier for
some types of prediction errors than others, alterna-
tive performance metrics are used, such as the “average
cost per predicted observation.”

A common misconception in various scientific fields
is that predictive power can be inferred from explana-
tory power. However, the two are different and should
be assessed separately. While predictive power can be
assessed for both explanatory and predictive models,
explanatory power is not typically possible to assess
for predictive models because of the lack of F and an
underlying causal structure. Measures such as R2 and
F would indicate the level of association, but not cau-
sation.

Predictive power is assessed using metrics computed
from a holdout set or using cross-validation (Stone,
1974; Geisser, 1975). Thus, a major difference between
explanatory and predictive performance metrics is the

data from which they are computed. In general, mea-
sures computed from the data to which the model was
fitted tend to be overoptimistic in terms of predictive
accuracy: “Testing the procedure on the data that gave
it birth is almost certain to overestimate performance”
(Mosteller and Tukey, 1977). Thus, the holdout set
serves as a more realistic context for evaluating pre-
dictive power.

2.6.3 Model selection. Once a set of models f1, f2,

. . . has been estimated and validated, model selection
pertains to choosing among them. Two main differen-
tiating aspects are the data–theory and bias–variance
considerations. In explanatory modeling, the models
are compared in terms of explanatory power, and hence
the popularity of nested models, which are easily com-
pared. Stepwise-type methods, which use overall F

statistics to include and/or exclude variables, might ap-
pear suitable for achieving high explanatory power.
However, optimizing explanatory power in this fash-
ion conceptually contradicts the validation step, where
variable inclusion/exclusion and the structure of the
statistical model are carefully designed to represent the
theoretical model. Hence, proper explanatory model
selection is performed in a constrained manner. In the
words of Jaccard (2001):

Trimming potentially theoretically mean-
ingful variables is not advisable unless one
is quite certain that the coefficient for the
variable is near zero, that the variable is in-
consequential, and that trimming will not
introduce misspecification error.

A researcher might choose to retain a causal covari-
ate which has a strong theoretical justification even

if is statistically insignificant. For example, in med-
ical research, a covariate that denotes whether a person
smokes or not is often present in models for health con-
ditions, whether it is statistically significant or not.8 In
contrast to explanatory power, statistical significance
plays a minor or no role in assessing predictive perfor-
mance. In fact, it is sometimes the case that removing
inputs with small coefficients, even if they are statis-

tically significant, results in improved prediction ac-
curacy (Greenberg and Parks, 1997; Wu, Harris and
McAuley, 2007, and see the Appendix). Stepwise-type
algorithms are very useful in predictive modeling as
long as the selection criteria rely on predictive power
rather than explanatory power.

As mentioned in Section 1.6, the statistics literature
on model selection includes a rich discussion on the
difference between finding the “true” model and find-
ing the best predictive model, and on criteria for ex-
planatory model selection versus predictive model se-
lection. A popular predictive metric is the in-sample
Akaike Information Criterion (AIC). Akaike derived
the AIC from a predictive viewpoint, where the model
is not intended to accurately infer the “true distribu-
tion,” but rather to predict future data as accurately
as possible (see, e.g., Berk, 2008; Konishi and Kita-
gawa, 2007). Some researchers distinguish between
AIC and the Bayesian information criterion (BIC) on
this ground. Sober (2002) concluded that AIC mea-
sures predictive accuracy while BIC measures good-
ness of fit:

8I thank Ayala Cohen for this example.
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In a sense, the AIC and the BIC provide es-
timates of different things; yet, they almost
always are thought to be in competition. If
the question of which estimator is better is
to make sense, we must decide whether the
average likelihood of a family [=BIC] or
its predictive accuracy [=AIC] is what we
want to estimate.

Similarly, Dowe, Gardner and Oppy (2007) con-
trasted the two Bayesian model selection criteria Min-
imum Message Length (MML) and Minimum Ex-
pected Kullback–Leibler Distance (MEKLD). They
concluded,

If you want to maximise predictive accu-
racy, you should minimise the expected KL
distance (MEKLD); if you want the best in-
ference, you should use MML.

Kadane and Lazar (2004) examined a variety of model
selection criteria from a Bayesian decision–theoretic
point of view, comparing prediction with explanation
goals.

Even when using predictive metrics, the fashion in
which they are used within a model selection process
can deteriorate their adequacy, yielding overoptimistic
predictive performance. Berk (2008) described the case
where

statistical learning procedures are often ap-
plied several times to the data with one or
more tuning parameters varied. The AIC
may be computed for each. But each AIC
is ignorant about the information obtained
from prior fitting attempts and how many
degrees of freedom were expended in the
process. Matters are even more complicated
if some of the variables are transformed
or recoded. . . Some unjustified optimism re-
mains.

2.7 Model Use and Reporting

Given all the differences that arise in the model-
ing process, the resulting predictive model would ob-
viously be very different from a resulting explanatory
model in terms of the data used ({X,Y }), the estimated
model f̂ , and explanatory power and predictive power.
The use of f̂ would also greatly differ.

As illustrated in Section 1.1, explanatory models
in the context of scientific research are used to de-
rive “statistical conclusions” using inference, which in

turn are translated into scientific conclusions regard-
ing F ,X,Y and the causal hypotheses. With a focus
on theory, causality, bias and retrospective analysis, ex-
planatory studies are aimed at testing or comparing ex-
isting causal theories. Accordingly the statistical sec-
tion of explanatory scientific papers is dominated by
statistical inference.

In predictive modeling f̂ is used to generate predic-
tions for new data. We note that generating predictions
from f̂ can range in the level of difficulty, depending
on the complexity of f̂ and on the type of prediction
generated. For example, generating a complete predic-
tive distribution is easier using a Bayesian approach
than the predictive likelihood approach.

In practical applications, the predictions might be
the final goal. However, the focus here is on predictive
modeling for supporting scientific research, as was dis-
cussed in Section 1.2. Scientific predictive studies and
articles therefore emphasize data, association, bias–
variance considerations, and prospective aspects of the
study. Conclusions pertain to theory-building aspects
such as new hypothesis generation, practical relevance,
and predictability level. Whereas explanatory articles
focus on theoretical constructs and unobservable para-
meters and their statistical section is dominated by in-
ference, predictive articles concentrate on the observ-
able level, with predictive power and its comparison
across models being the core.

3. TWO EXAMPLES

Two examples are used to broadly illustrate the dif-
ferences that arise in predictive and explanatory stud-
ies. In the first I consider a predictive goal and dis-
cuss what would be involved in “converting” it to an
explanatory study. In the second example I consider
an explanatory study and what would be different in
a predictive context. See the work of Shmueli and
Koppius (2010) for a detailed example “converting”
the explanatory study of Gefen, Karahanna and Straub
(2003) from Section 1 into a predictive one.

3.1 Netflix Prize

Netflix is the largest online DVD rental service in
the United States. In an effort to improve their movie
recommendation system, in 2006 Netflix announced a
contest (http://netflixprize.com), making public a huge
dataset of user movie ratings. Each observation con-
sisted of a user ID, a movie title, and the rating that the
user gave this movie. The task was to accurately pre-
dict the ratings of movie-user pairs for a test set such

http://netflixprize.com
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that the predictive accuracy improved upon Netflix’s
recommendation engine by at least 10%. The grand
prize was set at $ 1,000,000. The 2009 winner was a
composite of three teams, one of them from the AT&T
research lab (see Bell, Koren and Volinsky, 2010). In
their 2008 report, the AT&T team, who also won the
2007 and 2008 progress prizes, described their model-
ing approach (Bell, Koren and Volinsky, 2008).

Let me point out several operations and choices de-
scribed by Bell, Koren and Volinsky (2008) that high-
light the distinctive predictive context. Starting with
sample size, the very large sample released by Net-
flix was aimed at allowing the estimation of f from
the data, reflecting the absence of a strong theory. In
the data preparation step, with relation to missingness
that is predictively informative, the team found that
“the information on which movies each user chose
to rate, regardless of specific rating value” turned out
to be useful. At the data exploration and reduction
step, many teams including the winners found that the
noninterpretable Singular Value Decomposition (SVD)
data reduction method was key in producing accurate
predictions: “It seems that models based on matrix-
factorization were found to be most accurate.” As for
choice of variables, supplementing the Netflix data
with information about the movie (such as actors, di-
rector) actually decreased accuracy: “We should men-
tion that not all data features were found to be use-
ful. For example, we tried to benefit from an exten-
sive set of attributes describing each of the movies in
the dataset. Those attributes certainly carry a signifi-
cant signal and can explain some of the user behav-
ior. However, we concluded that they could not help
at all for improving the accuracy of well tuned collab-
orative filtering models.” In terms of choice of meth-
ods, their solution was an ensemble of methods that
included nearest-neighbor algorithms, regression mod-
els, and shrinkage methods. In particular, they found
that “using increasingly complex models is only one
way of improving accuracy. An apparently easier way
to achieve better accuracy is by blending multiple sim-
pler models.” And indeed, more accurate predictions
were achieved by collaborations between competing
teams who combined predictions from their individ-
ual models, such as the winners’ combined team. All
these choices and discoveries are very relevant for pre-
diction, but not for causal explanation. Although the
Netflix contest is not aimed at scientific advancement,
there is clearly scientific value in the predictive models
developed. They tell us about the level of predictabil-
ity of online user ratings of movies, and the implicated

usefulness of the rating scale employed by Netflix. The
research also highlights the importance of knowing
which movies a user does not rate. And importantly,
it sets the stage for explanatory research.

Let us consider a hypothetical goal of explaining

movie preferences. After stating causal hypotheses, we
would define constructs that link user behavior and
movie features X to user preference Y , with a care-
ful choice of F . An operationalization step would link
the constructs to measurable data, and the role of each
variable in the causality structure would be defined.
Even if using the Netflix dataset, supplemental covari-
ates that capture movie features and user characteris-
tics would be absolutely necessary. In other words, the
data collected and the variables included in the model
would be different from the predictive context. As to
methods and models, data compression methods such
as SVD, heuristic-based predictive algorithms which
learn f from the data, and the combination of multi-
ple models would be considered inappropriate, as they
lack interpretability with respect to F and the hypothe-
ses. The choice of f would be restricted to statistical
models that can be used for inference, and would di-
rectly model issues such as the dependence between
records for the same customer and for the same movie.
Finally, the model would be validated and evaluated in
terms of its explanatory power, and used to conclude
about the strength of the causal relationship between
various user and movie characteristics and movie pref-
erences. Hence, the explanatory context leads to a com-
pletely different modeling path and final result than the
predictive context.

It is interesting to note that most competing teams
had a background in computer science rather than sta-
tistics. Yet, the winning team combines the two dis-
ciplines. Statisticians who see the uniqueness and im-
portance of predictive modeling alongside explanatory
modeling have the capability of contributing to sci-
entific advancement as well as achieving meaningful
practical results (and large monetary awards).

3.2 Online Auction Research

The following example highlights the differences be-
tween explanatory and predictive research in online
auctions. The predictive approach also illustrates the
utility in creating new theory in an area dominated by
explanatory modeling.

Online auctions have become a major player in
providing electronic commerce services. eBay (www.
eBay.com), the largest consumer-to-consumer auction
website, enables a global community of buyers and

http://www.eBay.com
http://www.eBay.com
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sellers to easily interact and trade. Empirical research
of online auctions has grown dramatically in recent
years. Studies using publicly available bid data from
websites such as eBay have found many divergences
of bidding behavior and auction outcomes compared
to ordinary offline auctions and classical auction the-
ory. For instance, according to classical auction the-
ory (e.g., Krishna, 2002), the final price of an auc-
tion is determined by a priori information about the
number of bidders, their valuation, and the auction for-
mat. However, final price determination in online auc-
tions is quite different. Online auctions differ from of-
fline auctions in various ways such as longer duration,
anonymity of bidders and sellers, and low barriers of
entry. These and other factors lead to new bidding be-
haviors that are not explained by auction theory. An-
other important difference is that the total number of
bidders in most online auctions is unknown until the
auction closes.

Empirical research in online auctions has concen-
trated in the fields of economics, information systems
and marketing. Explanatory modeling has been em-
ployed to learn about different aspects of bidder be-
havior in auctions. A survey of empirical explanatory
research on auctions was given by Bajari and Hortacsu
(2004). A typical explanatory study relies on game
theory to construct F , which can be done in differ-
ent ways. One approach is to construct a “structural
model,” which is a mathematical model linking the var-
ious constructs. The major construct is “bidder val-
uation,” which is the amount a bidder is willing to
pay, and is typically operationalized using his observed
placed bids. The structural model and operationalized
constructs are then translated into a regression-type
model [see, e.g., Sections 5 and 6 in Bajari and Hor-
tacsu (2003)]. To illustrate the use of a statistical model
in explanatory auction research, consider the study by
Lucking-Reiley et al. (2007) who used a dataset of 461
eBay coin auctions to determine the factors affecting
the final auction price. They estimated a set of linear re-
gression models where Y = log(Price) and X included
auction characteristics (the opening bid, the auction du-
ration, and whether a secret reserve price was used),
seller characteristics (the number of positive and nega-
tive ratings), and a control variable (book value of the
coin). One of their four reported models was of the
form

log(Price) = β0 + β1 log(BookValue)

+ β2 log(MinBid) + β3Reserve

+ β4NumDays + β5PosRating

+ β6NegRating + ε.

The other three models, or “model specifications,” in-
cluded a modified set of predictors, with some interac-
tion terms and an alternate auction duration measure-
ment. The authors used a censored-Normal regression
for model estimation, because some auctions did not
receive any bids and therefore the price was truncated
at the minimum bid. Typical explanatory aspects of the
modeling are:

Choice of variables: Several issues arise from the
causal-theoretical context. First is the exclusion of
the number of bidders (or bids) as a determinant due
to endogeneity considerations, where although it is
likely to affect the final price, “it is endogenously
determined by the bidders’ choices.” To verify endo-
geneity the authors report fitting a separate regres-
sion of Y = Number of bids on all the determinants.
Second, the authors discuss operationalization chal-
lenges that might result in bias due to omitted vari-
ables. In particular, the authors discuss the construct
of “auction attractiveness” (X ) and their inability to
judge measures such as photos and verbal descrip-
tions to operationalize attractiveness.

Model validation: The four model specifications are
used for testing the robustness of the hypothesized
effect of the construct “auction length” across differ-
ent operationalized variables such as the continuous
number of days and a categorical alternative.

Model evaluation: For each model, its in-sample R2

is used for determining explanatory power.
Model selection: The authors report the four fitted re-

gression models, including both significant and in-
significant coefficients. Retaining the insignificant
covariates in the model is for matching f with F .

Model use and reporting: The main focus is on in-
ference for the β’s, and the final conclusions are
given in causal terms. (“A seller’s feedback rat-
ings. . . have a measurable effect on her auction
prices. . . when a seller chooses to have her auction
last for a longer period of days [sic], this signifi-
cantly increases the auction price on average.”)

Although online auction research is dominated by
explanatory studies, there have been a few predictive
studies developing forecasting models for an auction’s
final price (e.g., Jank, Shmueli and Wang, 2008; Jap
and Naik, 2008; Ghani and Simmons, 2004; Wang,
Jank and Shmueli, 2008; Zhang, Jank and Shmueli,
2010). For a brief survey of online auction forecast-
ing research see the work of Jank and Shmueli (2010,
Chapter 5). From my involvement in several of these
predictive studies, let me highlight the purely predic-
tive aspects that appear in this literature:
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Choice of variables: If prediction takes place before
or at the start of the auction, then obviously the to-
tal number of bids or bidders cannot be included as
a predictor. While this variable was also omitted in
the explanatory study, the omission was due to a dif-
ferent reason, that is, endogeneity. However, if pre-
diction takes place at time t during an ongoing auc-
tion, then the number of bidders/bids present at time
t is available and useful for predicting the final price.
Even more useful is the time series of the number of
bidders from the start of the auction until time t as
well as the price curve until time t (Bapna, Jank and
Shmueli, 2008).

Choice of methods: Predictive studies in online auc-
tions tend to learn f from the data, using flexible
models and algorithmic methods (e.g., CART, k-
nearest neighbors, neural networks, functional meth-
ods and related nonparametric smoothing-based
methods, Kalman filters and boosting (see, e.g.,
Chapter 5 in Jank and Shmueli, 2010). Many of these
are not interpretable, yet have proven to provide high
predictive accuracy.

Model evaluation: Auction forecasting studies eval-
uate predictive power on holdout data. They report
performance in terms of out-of-sample metrics such
as MAPE and RMSE, and are compared against other
predictive models and benchmarks.

Predictive models for auction price cannot provide
direct causal explanations. However, by producing
high-accuracy price predictions they shed light on new
potential variables that are related to price and on the
types of relationships that can be further investigated in
terms of causality. For instance, a construct that is not
directly measurable but that some predictive models
are apparently capturing is competition between bid-
ders.

4. IMPLICATIONS, CONCLUSIONS AND

SUGGESTIONS

4.1 The Cost of Indiscrimination to

Scientific Research

Currently, in many fields, statistical modeling is used
nearly exclusively for causal explanation. The conse-
quence of neglecting to include predictive modeling
and testing alongside explanatory modeling is losing
the ability to test the relevance of existing theories and
to discover new causal mechanisms. Feelders (2002)
commented on the field of economics: “The pure hy-
pothesis testing framework of economic data analysis

should be put aside to give more scope to learning from
the data. This closes the empirical cycle from observa-
tion to theory to the testing of theories on new data.”
The current accelerated rate of social, environmental,
and technological changes creates a burning need for
new theories and for the examination of old theories in
light of the new realities.

A common practice due to the indiscrimination of
explanation and prediction is to erroneously infer pre-
dictive power from explanatory power, which can lead
to incorrect scientific and practical conclusions. Col-
leagues from various fields confirmed this fact, and
a cursory search of their scientific literature brings
up many examples. For instance, in ecology an arti-
cle intending to predict forest beetle assemblages in-
fers predictive power from explanatory power [“To
study. . . predictive power, . . . we calculated the R2”;
“We expect predictabilities with R2 of up to 0.6”
(Muller and Brandl, 2009)]. In economics, an article
entitled “The predictive power of zero intelligence in
financial markets” (Farmer, Patelli and Zovko, 2005)
infers predictive power from a high R2 value of a lin-
ear regression model. In epidemiology, many studies
rely on in-sample hazard ratios estimated from Cox re-
gression models to infer predictive power, reflecting an
indiscrimination between description and prediction.
For instance, Nabi et al. (2010) used hazard ratio esti-
mates and statistical significance “to compare the pre-
dictive power of depression for coronary heart disease
with that of cerebrovascular disease.” In information
systems, an article on “Understanding and predicting
electronic commerce adoption” (Pavlou and Fygenson,
2006) incorrectly compared the predictive power of
different models using in-sample measures (“To exam-
ine the predictive power of the proposed model, we
compare it to four models in terms of R2 adjusted”).
These examples are not singular, but rather they reflect
the common misunderstanding of predictive power in
these and other fields.

Finally, a consequence of omitting predictive mod-
eling from scientific research is also a gap between
research and practice. In an age where empirical re-
search has become feasible in many fields, the oppor-
tunity to bridge the gap between methodological de-
velopment and practical application can be easier to
achieve through the combination of explanatory and
predictive modeling.

Finance is an example where practice is concerned
with prediction whereas academic research is focused
on explaining. In particular, there has been a reliance
on a limited number of models that are considered
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pillars of research, yet have proven to perform very
poorly in practice. For instance, the CAPM model and
more recently the Fama–French model are regression
models that have been used for explaining market be-
havior for the purpose of portfolio management, and
have been evaluated in terms of explanatory power
(in-sample R2 and residual analysis) and not predic-
tive accuracy.9 More recently, researchers have be-
gun recognizing the distinction between in-sample ex-
planatory power and out-of-sample predictive power
(Goyal and Welch, 2007), which has led to a discus-
sion of predictability magnitude and a search for pre-
dictively accurate explanatory variables (Campbell and
Thompson, 2005). In terms of predictive modeling, the
Chief Actuary of the Financial Supervisory Authority
of Sweden commented in 1999: “there is a need for
models with predictive power for at least a very near fu-
ture. . . Given sufficient and relevant data this is an area
for statistical analysis, including cluster analysis and
various kind of structure-finding methods” (Palmgren,
1999). While there has been some predictive model-
ing using genetic algorithms (Chen, 2002) and neural
networks (Chakraborty and Sharma, 2007), it has been
performed by practitioners and nonfinance academic
researchers and outside of the top academic journals.

In summary, the omission of predictive modeling for
theory development results not only in academic work
becoming irrelevant to practice, but also in creating
a barrier to achieving significant scientific progress,
which is especially unfortunate as data become easier
to collect, store and access.

In the opposite direction, in fields that focus on pre-
dictive modeling, the reason for omitting explanatory
modeling must be sought. A scientific field is usu-
ally defined by a cohesive body of theoretical knowl-
edge, which can be tested. Hence, some form of test-
ing, whether empirical or not, must be a component of
the field. In areas such as bioinformatics, where there is
little theory and an abundance of data, predictive mod-
els are pivotal in generating avenues for causal theory.

4.2 Explanatory and Predictive Power:

Two Dimensions

I have polarized explaining and predicting in this ar-
ticle in an effort to highlight their fundamental differ-
ences. However, rather than considering them as ex-

9Although in their paper Fama and French (1993) did split the
sample into two parts, they did so for purposes of testing the sensi-
tivity of model estimates rather than for assessing predictive accu-
racy.

tremes on some continuum, I consider them as two di-
mensions.10,11 Explanatory power and predictive accu-
racy are different qualities; a model will possess some
level of each.

A related controversial question arises: must an ex-
planatory model have some level of predictive power to
be considered scientifically useful? And equally, must
a predictive model have sufficient explanatory power to
be scientifically useful? For instance, some explanatory
models that cannot be tested for predictive accuracy yet
constitute scientific advances are Darwinian evolution
theory and string theory in physics. The latter produces
currently untestable predictions (Woit, 2006, pages x–
xii). Conversely, there exist predictive models that do
not properly “explain” yet are scientifically valuable.
Galileo, in his book Two New Sciences, proposed a
demonstration to determine whether light was instan-
taneous. According to Mackay and Oldford (2000),
Descartes gave the book a scathing review:

The substantive criticisms are generally di-
rected at Galileo’s not having identified the
causes of the phenomena he investigated.
For most scientists at this time, and partic-
ularly for Descartes, that is the whole point
of science.

Similarly, consider predictive models that are based on
a wrong explanation yet scientifically and practically
they are considered valuable. One well-known example
is Ptolemaic astronomy, which until recently was used
for nautical navigation but is based on a theory proven
to be wrong long ago. While such examples are ex-
treme, in most cases models are likely to possess some
level of both explanatory and predictive power.

Considering predictive accuracy and explanatory
power as two axes on a two-dimensional plot would
place different models (f ), aimed either at explana-
tion or at prediction, on different areas of the plot. The
bi-dimensional approach implies that: (1) In terms of
modeling, the goal of a scientific study must be speci-
fied a priori in order to optimize the criterion of inter-
est; and (2) In terms of model evaluation and scientific
reporting, researchers should report both the explana-

tory and predictive qualities of their models. Even if
prediction is not the goal, the predictive qualities of
a model should be reported alongside its explanatory

10Similarly, descriptive models can be considered as a third di-
mension, where yet different criteria are used for assessing the
strength of the descriptive model.

11I thank Bill Langford for the two-dimensional insight.
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power so that it can be fairly evaluated in terms of its
capabilities and compared to other models. Similarly, a
predictive model might not require causal explanation
in order to be scientifically useful; however, reporting
its relation to causal theory is important for purposes
of theory building. The availability of information on
a variety of predictive and explanatory models along
these two axes can shed light on both predictive and
causal aspects of scientific phenomena. The statistical
modeling process, as depicted in Figure 2, should in-
clude “overall model performance” in terms of both
predictive and explanatory qualities.

4.3 The Cost of Indiscrimination to the

Field of Statistics

Dissolving the ambiguity surrounding explanatory
versus predictive modeling is important for advancing
our field itself. Recognizing that statistical methodol-
ogy has focused mainly on inference indicates an im-
portant gap to be filled. While our literature contains
predictive methodology for model selection and pre-
dictive inference, there is scarce statistical predictive
methodology for other modeling steps, such as study
design, data collection, data preparation and EDA,
which present opportunities for new research. Cur-
rently, the predictive void has been taken up the field
of machine learning and data mining. In fact, the differ-
ences, and some would say rivalry, between the fields
of statistics and data mining can be attributed to their
different goals of explaining versus predicting even
more than to factors such as data size. While statisti-
cal theory has focused on model estimation, inference,
and fit, machine learning and data mining have concen-
trated on developing computationally efficient predic-
tive algorithms and tackling the bias–variance trade-off
in order to achieve high predictive accuracy.

Sharpening the distinction between explanatory and
predictive modeling can raise a new awareness of the
strengths and limitations of existing methods and prac-
tices, and might shed light on current controversies
within our field. One example is the disagreement in
survey methodology regarding the use of sampling
weights in the analysis of survey data (Little, 2007).
Whereas some researchers advocate using weights to
reduce bias at the expense of increased variance, and
others disagree, might not the answer be related to the
final goal?

Another ambiguity that can benefit from an explana-
tory/predictive distinction is the definition of parsi-
mony. Some claim that predictive models should be

simpler than explanatory models: “Simplicity is rele-
vant because complex families often do a bad job of
predicting new data, though they can be made to fit the
old data quite well” (Sober, 2002). The same argument
was given by Hastie, Tibshirani and Friedman (2009):
“Typically the more complex we make the model, the
lower the bias but the higher the variance.” In con-
trast, some predictive models in practice are very com-
plex,12 and indeed Breiman (2001b) commented: “in
some cases predictive models are more complex in or-
der to capture small nuances that improve predictive
accuracy.” Zellner (2001) used the term “sophisticat-
edly simple” to define the quality of a “good” model.
I would suggest that the definitions of parsimony and
complexity are task-dependent: predictive or explana-
tory. For example, an “overly complicated” model in
explanatory terms might prove “sophisticatedly sim-
ple” for predictive purposes.

4.4 Closing Remarks and Suggestions

The consequences from the explanatory/predictive
distinction lead to two proposed actions:

1. It is our responsibility to be aware of how statisti-
cal models are used in research outside of statistics,
why they are used in that fashion, and in response
to develop methods that support sound scientific re-
search. Such knowledge can be gained within our
field by inviting scientists from different disciplines
to give talks at statistics conferences and seminars,
and to require graduate students in statistics to read
and present research papers from other disciplines.

2. As a discipline, we must acknowledge the differ-
ence between explanatory, predictive and descrip-
tive modeling, and integrate it into statistics edu-
cation of statisticians and nonstatisticians, as early
as possible but most importantly in “research meth-
ods” courses. This requires creating written materi-
als that are easily accessible and understandable by
nonstatisticians. We should advocate both explana-
tory and predictive modeling, clarify their differ-
ences and distinctive scientific and practical uses,
and disseminate tools and knowledge for imple-
menting both. One particular aspect to consider is
advocating a more careful use of terms such as “pre-
dictors,” “predictions” and “predictive power,” to
reduce the effects of terminology on incorrect sci-
entific conclusions.

12I thank Foster Provost from NYU for this observation.
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Awareness of the distinction between explanatory and
predictive modeling, and of the different scientific
functions that each serve, is essential for the progress
of scientific knowledge.

APPENDIX: IS THE “TRUE” MODEL THE BEST

PREDICTIVE MODEL? A LINEAR REGRESSION

EXAMPLE

Consider F to be the true function relating constructs
X and Y and let us assume that f is a valid oper-
ationalization of F . Choosing an intentionally biased
function f ∗ in place of f is clearly undesirable from
a theoretical–explanatory point of view. However, we
will show that f ∗ can be preferable to f from a pre-
dictive standpoint.

To illustrate this, consider the statistical model
f (x) = β1x1 + β2x2 + ε which is assumed to be cor-
rectly specified with respect to F . Using data, we ob-
tain the estimated model f̂ , which has the properties

Bias = 0,(2)

Var(f̂ (x)) = Var(x1β̂1 + x2β̂2)
(3)

= σ 2x′(X′X)−1x,

where x is the vector x = [x1, x2]
′, and X is the de-

sign matrix based on both predictors. Combining the
squared bias with the variance gives

EPE = E
(

Y − f̂ (x)
)2

= σ 2 + 0 + σ 2x′(X′X)−1x(4)

= σ 2(

1 + x′(X′X)−1x
)

.

In comparison, consider the estimated underspeci-
fied form f̂ ∗(x) = γ̂1x1. The bias and variance here
are given by Montgomery, Peck and Vining (2001,
pages 292–296):

Bias = x1γ1 − (x1β1 + x2β2)

= x1(x
′
1x1)

−1x′
1(x1β1 + x2β2)

− (x1β1 + x2β2),

Var(f̂ ∗(x)) = x1 Var(γ̂1)x1 = σ 2x1(x
′
1x1)

−1x1.

Combining the squared bias with the variance gives

EPE =
(

x1(x
′
1x1)

−1x′
1x2β2 − x2β2

)2

(5)
+ σ 2(

1 + x1(x
′
1x1)

−1x′
1

)

.

Although the bias of the underspecified model f ∗(x)

is larger than that of f (x), its variance can be smaller,
and in some cases so small that the overall EPE will

be lower for the underspecified model. Wu, Harris and
McAuley (2007) showed the general result for an un-
derspecified linear regression model with multiple pre-
dictors. In particular, they showed that the underspeci-
fied model that leaves out q predictors has a lower EPE
when the following inequality holds:

qσ 2 > β ′
2X

′
2(I − H1)X2β2.(6)

This means that the underspecified model produces
more accurate predictions, in terms of lower EPE, in
the following situations:

• when the data are very noisy (large σ );
• when the true absolute values of the left-out parame-

ters (in our example β2) are small;
• when the predictors are highly correlated; and
• when the sample size is small or the range of left-out

variables is small.

The bottom line is nicely summarized by Hagerty
and Srinivasan (1991): “We note that the practice in
applied research of concluding that a model with a
higher predictive validity is “truer,” is not a valid in-
ference. This paper shows that a parsimonious but less
true model can have a higher predictive validity than a
truer but less parsimonious model.”
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