
Machine Leaming, 20, 273-297 (1995)

~) 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Support-Vector Networks

CORINNA CORTES

VLADIMIR VAPNIK

AT&T Bell Labs., Hohndel, NJ 07733, USA

corinna@ neurai.att.com

vlad@neurai.att.com

Editor: Lorenza Saitta

Abstract . The support-vector network is a new leaming machine for two-group classification problems. The

machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-

dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the

decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector

network was previously implemented for the restricted case where the training data can be separated without

errors. We here extend this result to non-separable training data.

High generalization ability of support-vector networks utilizing polynomial input transformations is demon-

strated. We also compare the performance of the support-vector network to various classical learning algorithms

that all took part in a benchmark study of Optical Character Recognition.

Keywords: pattern recognition, efficient learning algorithms, neural networks, radial basis function classifiers,

polynomial classifiers.

1. Introduction

More than 60 years ago R.A. Fisher (Fisher, 1936) suggested the first algorithm for pattern

recognition. He considered a model of two normal distributed populations, N (m t , ~1)

and N(m2, ~2) o f n dimensional vectors x with mean vectors ml and m2 and co-variance

matrices E t and E2, and showed that the optimal (Bayesian) solution is a quadratic decision

function:

[~ 1 IE2I] (1)
Fsq(X) = sign (x - ml)7"E~-~(x - ma) - ~ (x - m 2) : r E f l (x - m2) + In 1-~11_] "

In the case where E1 = Ez = ~ the quadratic decision function (1) degenerates to a linear

function:

Flin(X) = s i g n [(m t - m 2) T ~ i - l x - l (m l r ~ - l m l 2 -- m T ~ - l m 2)] . (2)

To estimate the quadratic decision function one has to determine ~ free parameters. To

estimate the linear function only n free parameters have to be determined. In the case where

the number of observations is small (say less than 10 n 2) estimating o(n z) parameters is not

reliable. Fisher therefore recommended, even in the case of ~1 ~ ~32, to use the linear

discriminator function (2) with ~ of the form:

Y]~ = "gY]l -~- (1 - - "Y)~-]2, (3)

where r is some constant 1. Fisher also recommended a linear decision function for the

case where the two distributions are not normal. Algorithms for pattern recognition

274 CORTES AND VAPNIK

[]

dot-product
I

\ I
dot-products

perceptron output

weights of the output unit,

e~ 1 cc 5

output from the 5 hidden units: z 1 z 5

weights of the 5 hidden units ~ i l

" ~ " output from the 4 hidden units

~ ~ ~ weights of the 4 hidden units

dot-products

ut vector, x

Figure 1. A simple feed-forward perceptron with 8 input units, 2 layers of hidden units, and I output unit. The

gray-shading of the vector entries reflects their numeric value.

were therefore from the very beginning associated with the construction of linear deci-

sion surfaces.

In 1962 Rosenblatt (Rosenblatt, 1962) explored a different kind of learning machines:

perceptrons or neural networks. The perceptron consists of connected neurons, where each

neuron implements a separating hyperplane, so the perceptron as a whole implements a

piecewise linear separating surface. See Fig. 1.

No algorithm that minimizes the error on a set of vectors by adjusting all the weights of

the network was found in Rosenblatt's time, and Rosenblatt suggested a scheme where only

the weights of the output unit were adaptive. According to the fixed setting of the other

weights the input vectors are non-linearly transformed into the feature space, Z, of the last

layer of units. In this space a linear decision function is constructed:

I (x) = sign(~iotizi(x)) (4)

by adjusting the weights oti from the ith hidden unit to the output unit so as to minimize some

error measure over the training data. As a result of Rosenblatt's approach, construction of

decision rules was again associated with the construction of linear hyperplanes in some

space.

An algorithm that allows for all weights of the neural network to adapt in order locally to

minimize the error on a set of vectors belonging to a pattern recognition problem was found

in 1986 (Rumelhart, Hinton & Williams, 1986, 1987; Parker, 1985; LeCun, 1985) when the

back-propagation algorithm was discovered. The solution involves a slight modification

of the mathematical model of neurons. Therefore, neural networks implement "piece-wise

linear-type" decision functions.

In this article we construct a new type of learning machine, the so-called support-vector

network. The support-vector network implements the following idea: it maps the input

vectors into some high dimensional feature space Z through some non-linear mapping

chosen a priori. In this space a linear decision surface is constructed with special properties

that ensure high generalization ability of the network.

SUPPORT-VECTOR NETWORKS 275

× X

~xX~
O O C) " ~ " ' , ; ~ o p t i m a l margin

o j o0='o-.,1"'-. \
~ O 0 0 ö ~ "~'optima, hyperp,an e

Figure 2. An example of a separable problem in a 2 dimensional space. The support vectors, marked with grey

squares, define the margin of largest separation between the two classes.

EXAMPLE. To obtain a decision surface corresponding to a polynomial of degree two, one

can create a feature space, Z, which has N = @ coordinates of the form:

Z l ~ X 1 , . . . , Z n ~ X n ,

2 2
Z n + 1 ~-- X { , . . . , Z 2 n ~ X n ,

Z2n+l ~ X l X 2 , . . . , Z N ~ X n X n - 1 ,

n coordinates,

n coordinates,

n(n - 1)
- - coordinates,

2

where x = (xl xn). The hyperplane is then constructed in this space.

Two problems arise in the above approach: one conceptual and one technical. The con-

ceptual problem is how to find a separating hyperplane that will generalize well: the dimen-

sionality of the feature space will be lauge, and not all hyperplanes that separate the training

data will necessarily generalize well 2. The technical problem is how computationally to

treat such high-dimensional spaces: to construct polynomial of degree 4 or 5 in a 200

dimensionai space it may be necessary to construct hyperplanes in a billion dimensional

feature space.

The conceptual part of this problem was solved in 1965 (Vapnik, 1982) for the case of

optimal hyperplanes for separable classes. An optimal hyperplane is here defined as the

linear decision function with maximal margin between the vectors of the two classes, see

Fig. 2. It was observed that to construct such optimal hyperplanes one only has to take into

acconnt a small amount of the training data, the so called support vectors, which determine

this margin. It was shown that if the training vectors are separated without errors by an

optimal hyperptane the expectation value of the probability of committing an error on a test

example is bounded by the ratio between the expectation value of the number of support

vectors and the number of training vectors:

E[number of support vectors]
E[Pr(error)] _< (5)

number of training vectors

276 CORTES AND VAPNIK

Note that this bound does not explicitly contain the dimensionality of the space of separation.

It follows from this bound, that if the optimal hyperplane can be constructed from a small

number of support vectors relative to the training set size the generalization ability will be

high----even in an infinite dimensional space. In Section 5 we will demonstrate that the ratio

(5) for a real life problems can be as low as 0.03 and the optimal hyperplane generalizes

well in a billion dimensional feature space.

Let

wo • z + bo = 0

be the optimal hyperplane in feature space. We will show, that the weights w0 for the

optimal hyperplane in the feature space can be written as some linear combination of

support vectors

W0 = ~ OtiZi. (6)
support vectors

The linear decision function I (z) in the feature space will accordingly be of the form:

l (z) = s i g n (~ otizi.z+bo) ,
\support vectors

(7)

where zi • z is the dot-product between support vectors zi and vector z in feature space. The

decision function can therefore be described as a two layer network (Fig. 3).

However, even if the optimal hyperplane generalizes well the technical problem of how

to treat the high dimensional feature space remains. In 1992 it was shown (Boser, Guyon,

& Vapnik, 1992), that the order of operations for constructing a decision function can

be interchanged: instead of making a non-linear transformation of the input vectors fol-

lowed by dot-products with support vectors in feature space, one can first compare two

vectors in input space (by e.g. taking their dot-product or some distance measure), and

then make a non-linear transformation of the value of the result (see Fig. 4). This en-

ables the construction of rich classes of decision surfaces, for example polynomial decision

surfaces of arbitrary degree. We will call this type of learning machine a support-vector

network 3.

The technique of support-vector networks was first developed for the restricted case of

separating training data without errors. In this article we extend the approach of support-

vector networks to cover when separation without error on the training vectors is impossible.

With this extension we consider the support-vector networks as a new class of learning

machine, as powerful and universal as neural networks. In Section 5 we will demonstrate

how well it generalizes for high degree polynomial decision surfaces (up to order 7) in a

high dimensional space (dimension 256). The performance of the algorithm is compared

to that of classical learning machines e.g. linear classifiers, k-nearest neighbors classifiers,

and neural networks. Sections 2, 3, and 4 are devoted to the major points of the derivation

of the algorithm and a discussion of some of its properties. Details of the derivation are

relegated to an appendix.

SUPPORT-VECTOR NETWORKS 277

B
cation

w WN

£ U ~ ~ ~] suppOrtvectOrs ..
in feature space

input vector in feature space

n-linear transformation

" input vector, x

Figure 3. Classification by a support-vector network of an unknown pattern is conceptually done by first trans-

forming the pattem into some high-dimensional feature space. An optimal hyperplane constructed in this feature

space determines the output. The similarity to a two-layer perceptron can be seen by comparison to Fig. 1.

2. Opümal Hyperplanes

In this section we review the method of optimal hyperplanes (Vapnik, 1982) for separation

of t ra ining data without errors. In the next section we introduce a not ion of soff margins,

that will al low for an analytic t reatment of learning with errors on the training set.

2.1. The Optimal Hyperplane Algorithm

The set of labeled t ra ining patterns

(Yl, Xl) (Ye, x~), Yi ~ { - 1 , 1} (8)

is said to be l inearly separable if there exists a vector w and a scalar b such that the inequali t ies

w . xi + b > 1 if Yi = 1,

w . x i + b < - 1 if Yi = - 1 , (9)

278 CORTES AND VAPNIK

A

classification

~j~Lagrange mu[tipliers

~ ~ comparison
I ~'1 I J l I ~1 u¢K(xk,x

^ I
support
vectors, x k

[2] inputvector, x

Figure 4. Classification of an unknown pattern by a support-vector network. The pattern is in input space

zompared to support vectors. The resulting values are non-linearly transformed. A linear function of these

Iransformed values determine the output of the classifier.

are valid for all elements of the training set (8). Below we write the inequalities (9) in the

forma:

yi(W" X i -~- b) > 1, i = 1 •. (10)

The optimal hyperplane

wo-x+ bo = 0 (11)

is the unique one which separates the training data with a maximal margin: it determines

the direction w/Iwl where the distance between the projections of the training vectors of

two different classes is maximal, recall Fig. 2. This distance p(w, b) is given by

X ' W X ' W
p (w ,b)= min - - - max (12)

{x:y=l} IW[{x:y=--l} Iwl

The optimal hyperplane (Wo, bo) is the arguments that maximize the distance (12). It follows

from (12) and (10) that

2 2
p(wo, bo) (13)

Iwol , / ~ . wo

SUPPORT-VECTOR NETWORKS 279

This means that the optimal hyperplane is the unique one that minimizes w • w u n d e r the

constraints (10). Constructing an optimal hyperplane is therefore a quadratic programming

problem.

Vectors xi for which Yi (W. x i -1- b) = 1 will be termed s u p p o r t vectors . In Appendix A. 1

we show that the vector wo that determines the optimal hyperplane can be written as a linear

combination of training vectors:

£

WO : Z yiot?xi' (14)
i=1

where «o >_ 0. Since « > 0 only for support vectors (see Appendix), the expression (14)

represents a compact form of writing Wo. We also show that to find the vector of parameters

of i:

Aó = («0 ~o) ,

one has to solve the following quadratic programming problem:

W(A) = A r l - 1 A r D A (15)
2

with respect to A v = («1 de), subject to the constraints:

A > 0, (16)

A T y = 0, (17)

where I T = (1 1) is an g-dimensional unit vector, y r = (Yl y~) is the g-dimen-

sional vector of labels, and D is a symmetric £ × £-matrix with elements

Di j = y i Y j X i • x j , i, j = 1 1. (18)

The inequality (16) describes the nonnegative quadrant. We therefore have to maximize the

quadratic form (15) in the nonnegative quadrant, subject to the constraints (17).

When the training data (8) can be separated without errors we atso show in Appendix A

the following relationship between the maximum of the functional (15), the pair (A0, bo),

and the maximal margin Po from (13):

2
W(Ao) = ~o 2. (19)

If for some A . and large constant Wo the inequality

W(A,) > Wo (20)

is valid, one can accordingly assert that all hyperplanes that separate the training data (8)

have a margin

J~ p <

280 CORTES AND VAPNIK

If the training set (8) cannot be separated by a hyperplane, the margin between patterns

of the two classes becomes arbitrary small, resulting in the value of the functional W(A)

turning arbitrary large. Maximizing the functional (15) under constraints (16) and (17)

one therefore either reaches a maximum (in this case one has constructed the hyperplane

with the maximal margin Po), or one finds that the maximum exceeds some given (large)

constant Wo (in which case a separation of the training data with a margin larger then

is impossible).

The problem of maximizing functional (15) under constraints (16) and (17) can be solved

very efficiently using the following scheme. Divide the training data into a number of

portions with a reasonable small number of training vectors in each portion. Start out by

solving the quadratic programming problem determined by the first portion of training data.

For this problem there are two possible outcomes: either this portion of the data cannot be

separated by a hyperplane (in which case the full set of data as well cannot be separated),

or the optimal hyperplane for separating the first portion of the training data is found.

Let the vector that maximizes functional (15) in the case of separation of the first portion

be A1. Among the coordinates of vector A1 some are equal to zero. They correspond to

non-support training vectors of this portion. Make a new set of training data containing

the support vectors from the first portion of training data and the vectors of the second

portion that do not satisfy constraint (10), where w is determined by A1. For this set a

new functional W2(A) is constructed and maximized at A2. Continuing this process of

incrementally constructing a solution vector A , covering all the portions of the training

data one either finds that it is impossible to separate the training set without error, or one

constructs the optimal separating hyperplane for the full data set, A , = A0. Note, that

during this process the value of the functional W(A) is monotonically increasing, since

more and more training vectors are considered in the optimization, leading to a smaller and

smaller separation between the two classes.

3. The Soft Margin Hyperplane

Consider the case where the training data cannot be separated without error. In this case

one may want to separate the training set with a minimal number of errors. To express this

formally let us introduce some non-negative variables ~i > O, i = 1 ~.

We can now minimize the functional

i=1

(21)

for small ~r > 0, subject to the constraints

yi(w" xi + b) > 1 - ~i, i = 1 ~, (22)

~i > 0, i = 1 £. (23)

For sufficiently small ~r the functional (21) describes the number of the training errors 5.

Minimizing (21) one finds some minimal subset of training errors:

(Yi~, xit) (yi~,xi~).

SUPPORT-VECTOR NETWORKS 281

If these data are excluded from the training set one can separate the remaining part of the

training set without errors. To separate the remaining part of the training data orte can

construct an optimal separating hyperplane.

This idea can be expressed formally as: minimize the functional

~w2+CF (~~~) i = 1 (24)

subject to constraints (22) and (23), where F(u) is a monotonic convex function and C is

a constant.

For sufficiently large C and sufficiently small «, the vector Wo and constant b0, that

minimize the functional (24) under constraints (22) and (23), determine the hyperplane

that minimizes the number of errors on the training set and separate the rest of the elements

with maximal margin.

Note, however, that the problem of constructing a hyperplane which minimizes the

number of errors on the training set is in general NP-complete. To avoid NP-completeness

of our problem we will consider the case of cr = 1 (the smallest value of a for which

the optimization problem (15) has a unique solution). In this case the functional (24)

describes (for sufficiently large C) the problem of constructing a separating hyperplane

which minimizes the sum of deviations, ~, of training errors and maximizes the margin

for the correctly classified vectors. If the training data can be separated without errors the

constructed hyperplane coincides with the optimal margin hyperplane.

In contrast to the case with a < 1 there exists an efficient method for finding the solution

of (24) in the case of a = 1. Let us call this solution the soff margin hyperplane.
In Appendix A we consider the problem of minimizing the functional

subject to the constraints (22) and (23), where F(u) is a monotonic convex function with

F(0) = 0. To simplify the formulas we only describe the case of F(u) = u 2 in this section.

For this function the optimization problem remains a quadratic programming problem.

In Appendix A we show that the vector w, as for the optimal hyperplane algorithm, can

be written as a linear combination of support vectors xi:

£
w o ~-~ ~_£ « ° N I X i .

1 i=1

To find the vector A r = (~q oee) one has to solve the dual quadratic programming

problem of maximizing

W(A,~) = A r l - I [ATDA + ~] (26)

subject to constraints

A T y = 0, (27)

a > 0, (28)

0 < A < a l , (29)

282 CORTES AND VAPNIK

where 1, A, Y, and D are the same elements as used in the optimization problem for

constructing an optimal hyperplane, 3 is a scalar, and (29) describes coordinate-wise in-

equalities.

Note that (29) implies that the smallest admissible value 3 in functional (26) is

~ - Œ m a x = max(« l , . . . , otg).

Therefore to find a soft margin classifier one has to find a vector A that maximizes

W(A) = AT1 - A r D A + (30)

under the constraints A > 0 and (27). This problem differs from the problem ofconstructing

an optimal margin classifier only by the additional term with Otmax in the functional (30).

Due to this term the solution to the problem of constructing the soft margin classifier is

unique and exists for any data set.

The functional (30) is not quadratic because of the term with Otm~x. Maximizing (30)

subject to the constraints A > 0 and (27) belongs to the group of so-called convex pro-

gramming problems. Therefore, to construct a soft margin classifier one can either solve

the convex programming problem in the £-dimensional space of the parameters A, or one

can solve the quadratic programming problem in the dual £ + 1 space of the parameters A

and 3. In our experiments we construct the soft margin hyperplanes by solving the dual

quadratic programming problem.

4. The Method of Convolution of the Dot-Product in Feature Space

The algorithms described in the previous sections construct hyperplanes in the input space.

To construct a hyperplane in a feature space one first has to transform the n-dimensional

input vector x into an N-dimensional feature vector through a choice of an N-dimensional

vector function qS:

¢: ffP ---> 9t N.

An N dimensional linear separator w and a bias b is then constructed for the set of

transformed vectors

~ (X i) : t~l (Xi) , ~b2(Xi) ~ N (X i) , i : 1 6.

Classification of an unknown vector x is done by first transforming the vector to the sepa-

rating space (x w-~ ¢ (x)) and then taking the sign of the function

f(x) = w - ¢ (x) + b. (31)

According to the properties of the soff margin classifier method the vector w can be

written as a linear combination of support vectors (in the feature space). That means

£

W : Z yioli~)(Xi)"
i=1

(32)

SUPPORT-VECTOR NETWORKS 283

The linearity of the dot-product implies, that the classification function f in (31) for an

unknown vector x only depends on the dot-products:

f (x) = q~(x)- w + b = S Yi°ti~(x)" ~b(xi) + b.
i = 1

(33)

The idea of constructing support-vector networks comes from considering general forms

of the dot-product in a Hilbert space (Anderson & Bahadur, 1966):

~b (u)- <p (v) - K (u, v). (34)

According to the Hilbert-Schmidt Theory (Courant & Hilbert, 1953) any symmetric

function K(u, v), with K(u, v) ~ Le, can be expanded in the form

oo

K(u, v) = Z ~i~i(u) - ~ßi(V),
i=l

(35)

where ~-i c ~t and qSi are eigenvalues and eigenfunctions

f K (u, v)q~i (u)du =),i ~bi (v).

of the integral operator defined by the kernel K (u, v). A sufficient condition to ensure that

(34) defines a dot-product in a feature space is that all the eigenvalues in the expansion (35)

are positive. To guarantee that these coefficients are positive, it is necessary and sufficient

(Mercer's Theorem) that the condition

f f K(u, v)g(u)g(v)dudv > 0

is satisfied for all g such that

f g2(u)du < oo.

Functions that satisfy Mercer's theorem can therefore be used as dot-products. Aizerman,

Braverman and Rozonoer (1964) consider a convolution of the dot-product in the feature

space given by function of the form

K(u ,v) = exp(- l u ~ v l) , (36)

which they call Potential Functions.

However, the convolution of the dot-product in feature space can be given by any function

satisfying Mercer's condition; in particular, to construct a polynomial classifier of degree

d in n-dimensional input space one can use the following function

K(u, v) = (u- v + 1) d. (37)

284 CORTES AND VAPNIK

Using different dot-products K (u, v) one can construct different learning machines with

arbitrary types of decision surfaces (Boser, Guyon & Vapnik, 1992). The decision surface

of these machines has a form

f (x) = ~ y i o t i K (x , Xi),
i=1

where xi is the image of a support vector in input space and «i is the weight of a support

vector in the feature space.

To find the vectors xi and weights «i one follows the same solution scheme as for the

original optimal margin classifier or soft margin classifier. The only difference is that

instead of matrix D (determined by (18)) one uses the matrix

Dij : Yi Yj K (xi, x j), i, j = 1 1.

5. General Features of Support-Vector Networks

5.1. Constructing the Decision Rules by Support-Vector Networks is Efficient

To construct a support-vector network decision rule one has to solve a quadratic optimization

problem:

W(A) = A r l - ~ A r D A + ,

under the simple constraints:

0 _ < A < 8 1 ,

A T y ----= 0,

where matrix

Dij : YiYj K (xi, x j), i, j = 1 I.

is determined by the elements of the training set, and K (u, v) is the function determining

the convolution of the dot-products.

The solution to the optimization problem can be found efficiently by solving intermediate

optimization problems determined by the training data, that currently constitute the support

vectors. This technique is described in Section 3. The obtained optimal decision function

is unique 6.

Each optimization problem can be solved using any standard techniques.

5.2. The Support-Vector Network is a Universal Machine

By changing the function K(u, v) for the convolution of the dot~product one can implement

different networks.

SUPPORT-VECTOR NETWORKS 285

In the next section we will consider support-vector network machines that use polynomial

decision surfaces. To specify polynomials of different order d one can use the following

functions for convolution of the dot-product

K(u, v) ---- (u. v + 1) d.

Radial Basis Function machines with decision functions of the form

f (x) = sign O~ i e x p ä f
\ i=1

can be implemented by using convolutions of the type

/ ,o«,~j
K (u, v) = exp ~-i "

In this case the support-vector network machine will construct both the centers xi of the

approximating function and the weights «i.

One can also incorporate a priori knowledge of the problem at hand by constructing

special convolution functions. Support-vector networks are therefore a rather general class

of learning machines which changes its set of decision functions simply by changing the

form of the dot-product.

5.3. Support-Vector Networks and Control of Generalization Ability

To control the generalization ability of a learning machine one has to control two different

factors: the error-rate on the training data and the capacity of the learning machine as

measured by its VC-dimension (Vapnik, 1982). There exists a bound for the probability of

errors on the test set of the following form: with probability 1 - r/the inequality

Pr(test error) < Frequency(training error) + Confidence Interval (38)

is valid. In the bound (38) the confidence interval depends on the VC-dimension of the

learning machine, the number of elements in the training set, and the value of r/.

The two factors in (38) form a trade-off: the smaller the VC-dimension of the set of

functions of the learning machine, the smaller the confidence interval, but the larger the

value of the error frequency.

A general way for resolving this trade-off was proposed as the principle of structural risk

minimization: for the given data set one has to find a solution that minimizes their sum.

A particular case of structural risk minimization principle is the Occam-Razor principle:

keep the first term equal to zero and minimize the second one.

It is known that the VC-dimension of the set of linear indicator functions

l (x) = s i g n (w . x + b) , I x [< C x

with fixed threshold b is equal to the dimensionality of the input space. However, the

VC-dimension of the subset

l (x) = sign(w, x + b), [xm _< C, [wg _< Cw

286 CORTES AND VAPNIK

(the set of functions with bounded norm of the weights) can be less than the dimensionality

of the input space and will depend on Cw.

From this point of view the optimal margin classifier method executes an Occam-Razor

principle. It keeps the first term of (38) equal to zero (by satisfying the inequality (9))

and it minimizes the second term (by minimizing the functional w. w). This minimization

prevents an over-fitting problem.

However, even in the case where the training data are separable one may obtain better

generalization by minimizing the confidence term in (38) even further at the expense of

errors on the training set. In the soft margin classifier method this can be done by choosing

appropriate values of the parameter C. In the support-vector network algorithm one can

control the trade-off between complexity of decision rule and frequency of error by changing

the parameter C, even in the more general case where there exists no solution with zero

error on the training set. Therefore the support-vector network can control both factors for

generalization ability of the learning machine.

6. Experimental Analysis

To demonstrate the support-vector network method we conduct two types of experiments.

We construct artificial sets of patterns in the plane and experiment with 2nd degree poly-

nomial decision surfaces, and we conduct experiments with the real-life problem of digit

recognition.

6.1. Experiments in the Plane

Using dot-products of the form

K(n ,v) = (u . v + 1) a (39)

with d = 2 we construct decision rules for different sets of patterns in the plane. Results

of these experiments can be visualized and provide nice illustrations of the power of the

algorithm. Examples are shown in Fig. 5. The 2 classes are represented by black and white

Figure 5. Examples of the dot-product (39) with d = 2, Support patterns are indicated with doable circles,

errors with a cross.

SUPPORT-VECTOR NETWORKS 287

7 7 4 8 0 1 - 4

8 7 4 8 7 3 7

Figure 6. Examples of patterns with labels from the US Postal Service digit database.

bullets. In the figure we indicate support patterns with a double circle, and errors with a

cross. The solutions are optimal in the sense that no 2nd degree polynomials exist that make

less errors. Notice that the numbers of support patterns relative to the number of training

patterns are small.

6.2. Experiments with Digit Recognition

Our experiments for constructing support-vector networks make use of two different data-

bases for bi t-mapped digit recognition, a small and a large database. The small one is a US

Postal Service database that contains 7,300 training patterns and 2,000 test patterns. The

resolution of the database is 16 x 16 pixels, and some typical examples are shown in Fig. 6.

On this database we report experimental research with polynomials of various degree.

The large database consists of 60,000 training and 10,000 test patterns, and is a 50-50

mixture of the NIST 7 training and test sets. The resolution of these patterns is 28 x 28

yielding an input dimensionali ty of 784. On this database we have only constructed a 4th

degree polynomial classifier. The performance of this classifier is compared to other types

of learning machines that took part in a benchmark study (Bottou, 1994).

In all our experiments ten separators, one for each class, are constructed. Each hyper-

surface makes use of the same dot product and pre-processing of the data. Classification of

an unknown patterns is done according to the maximum output of these ten classifiers.

6.2.1. Experiments with US Postal Service Database. The US Postal Service Database

has been recorded from actual mail pieces and results from this database have been reported

by several researchers. In Table 1 we list the performance of various classifiers collected

Table L Performance of various classifiers collected from publications and own experiments. For references
see text.

Classifier Raw error, %

Human performance 2.5
Decision tree, CART 17

Decision tree, C4.5 16
Best 2 layer neural network 6.6
Special architecture 5 layer network 5.1

288 CORTES AND VAPNIK

Table 2. Results obtained for dot products of polynomials of various degree. The number of "support vectors"
is a mean value per classifier.

Degree of Raw Support Dimensionality of
polynomial error, % vectors feature space

1 12.0 200 256
2 4.7 127 ~33000
3 4.4 148 ~1 x 106
4 4.3 165 ~I x 109
5 4.3 175 ~1 x 1012
6 4.2 185 ~1 x 1014
7 4.3 190 ~1 x 1016

from publications and own experiments. The result of human performance was reported

by J. Bromley & E. Sackinger (Bromley & Sackinger, 1991). The result with CART was

carried out by Daryl Pregibon and Michael D. Riley at Bell Labs., Murray Hill, NJ. The

results of C4.5 and the best 2-layer neural network (with optimal number of hidden units)

were obtained specially for this paper by Corinna Cortes and Bernard Schoelkopf respee-

tively. The result with a special purpose neural network architecture with 5 layers, LeNetl ,

was obtained by Y. LeCun et al. (1990).

On the experiments with the US Postal Service Database we used pre-processing (cen-

tering, de-slanting and smoothing) to incorporate knowledge about the invariances of the

problem at hand. The effect of smoothing of this database as a pre-processing for support-

vector networks was investigated in (Boser, Guyon & Vapnik, 1992). For our experiments

we chose the smoothing kernel as a Gaussian with standard deviation ~r = 0.75 in agreement

with (Boser, Guyon & Vapnik, 1992).

In the experiments with this database we constructed polynomial indicator functions

based on dot-products of the form (39). The input dimensionality was 256, and the order

of the polynomial ranged from 1 to 7. Table 2 describes the results of the experiments. The

training data are not linearly separable.

Notice that the number of support vectors increases very slowly. The 7 degree polyno-

mial has only 30% more support vectors than the 3rd degree polynomial--and even less

than the first degree polynomial. The dimensionality of the feature space for a 7 degree

polynomial is however 101° times larger than the dimensionality of the feature space for

a 3rd degree polynomial classifier. Note that performance almost does not change with

increasing dimensionality of the space--indicating no over-fitting problems.

The relatively high number of support vectors for the linear separator is due to non-

separability: the number 200 includes both support vectors and training vectors with a non-

zero ~-value. I f~ > 1 the training vector is misclassified; the number ofmis-classifications

on the training set averages to 34 per classifier for the linear case. For a 2nd degree classifier

the total number of mis-classifications on the training set is down to 4. These 4 patterns are

shown in Fig. 7.

It is remarkable that in all our experiments the bound for generalization ability (5) holds

when we consider the number of obtained support vectors instead of the expectation value

of this number. In all cases the upper bound on the error probability for the single classifier

does not exceed 3% (on the test data the actual error does not exceed 1.5% for the single

classifier).

SUPPORT-VECTORNETWORKS 289

~ 1 1 4 1 ~ 1 ~ :.~
4 4 8 5

Figure 7. Labeled examples of errors on the training set for the 2nd degree polynomial support-vector classifier.

The training time for construction of polynomial classifiers does not depend on the de-

gree of the polynomial---only the number of support vectors. Even in the worst case it is

fastet than the best performing neural network, constructed specially for the task, LeNet l

(LeCun, et al., 1990). The performance of this neural network is 5.1% raw error. Polyno-

mials with degree 2 or higher outperform LeNet l .

6.2.2. Experiments with the NIST Database. TheNISTda tabasewasused fo rbenchmark

studies conducted over just 2 weeks. The limited time frame enabled only the construction

of 1 type of classifier, for which we chose a 4th degree polynomial with no pre-processing.

Our choice was based on our experience with the US Postal database.

Table 3 lists the number of support vectors for each of the 10 classifiers and gives the

performance of the classifier on the training and test sets. Notice that even polynomials

of degree 4 (that have more than 108 free parameters) commit errors on this training set.

The average frequency of training errors is 0.02% ~ 12 per class. The 14 misclassified test

patterns for classifier 1 are shown in Fig. 8. Notice again how the upper bound (5) holds

for the obtained number of support vectors.

The combined performance of the ten classifiers on the test set is 1.1% error. This result

should be compared to that of other participating classifiers in the benchmark study. These

other classifiers include a linear classifier, a k = 3-nearest neighbor classifier with 60,000

prototypes, and two neural networks specially constructed for digit recognition (LeNetl

and LeNet4). The authors only contributed with results for support-vector networks. The

results of the benchmark are given in Fig. 9.

We conclude this section by citing the paper (Bottou, et al., 1994) describing results of

the benchmark:

For quite a long t ime LeNet l was considered state of the a r t . . . Through a series

of experiments in architecture, combined with an analysis of the characteristics of

recognition error, LeNet4 was crafted

The support-vector network has excellent accuracy, which is most remarkable, be-

cause unlike the other high performance classifiers, it does not include knowledge

Table 3. Results obtained for a 4th degree polynomial classifier on the NIST database. The size of the training
set is 60,000, and the size of the test set is 10,000 patterns.

C1. 0 C1. 1 CI. 2 C1. 3 C1. 4 CI. 5 CI. 6 CI. 7 C1. 8 C1, 9

Supp. patt, 1379 989 1958 1900 1224 2024 1527 2 0 6 4 2 3 3 2 2765
Error train 7 16 8 11 2 4 8 16 4 1

Error test 19 14 35 35 36 49 32 43 48 63

290 CORTES AND VAPNIK

I ~1«1~1 ~ II ~ l t l ~
1 6 1 9 6 6 1

1~ I~[n l J ~~ 1[1, l z~ I~1
9 1 1 1 1 1 1

Figure 8. The 14 misclassified test pattems with iabels for classifier 1. Patterns with label "1" are false negative.

Patterns with other labels are false positive.

Test
erroi

2~

Figure 9.

l i nea r

classifier
k=3-nearest
neighbor

Results from the benchmark study.

LeNetl LeNet4 SVN

about the geometry of the problem. In fact the classifier would do as weil if the

image pixels were encrypted e.g. by a fixed, random permutation.

The last remark suggests that further improvement of the performance of the support-

vector network can be expected from the construction of functions for the dot-product

K(u, v) that reflect a priori information about the problem at hand.

7. Conclusion

This paper introduces the support-vector network as a new learning machine for two-group

classification problems.

The support-vector network combines 3 ideas: the solution technique from optimal hy-

perplanes (that allows for an expansion of the solution vector on support vectors), the idea of

convolufion of the dot-product (that extends the solution surfaces from linear to non-linear),

and the notion of soft margins (to allow for errors on the training set).

SUPPORT-VECTOR NETWORKS 291

The algorithm has been tested and compared to the performance of other classical al-

gorithms. Despite the simplicity of the design in its decision surface the new algorithm

exhibits a very fine performance in the comparison study.

Other characteristics like capacity control and ease of changing the implemented decision

surface render the support-vector network an extremely powerful and universal learning

machine.

A. Constructing Separating Hyperplanes

In this appendix we derive both the method for constructing optimal hyperplanes and soft

margin hyperplanes.

A.1. Opt imal Hyperp lane Algor i thm

It was shown in Section 2, that to construct the optimal hyperplane

Wo.x+bo = 0 , (40)

which separates a set of training data

(Y l , X l) (Ye , Xe),

one has to minimize a functional

q b = W ' W ,

subject to the constraints

Yi (Xi • W -1- b) > 1, i = 1 £. (41)

To do this we use a standard optimization technique. We construct a Lagrangian

1
L(w, b, A) = ~ w . w - Z o l i [Y i (X i • w + b) - 1], (42)

i=l

where A T = («1 ole) is the vector of non-negative Lagrange multipliers corresponding

to the constraints (41).

It is known that the solution to the optimization problem is determined by the saddle point

of this Lagrangian in the 2e + 1-dimensional space of w, A, and b, where the minimum

should be taken with respect to the parameters w and b, and the maximum should be taken

with respect to the Lagrange multipliers A.

At the point of the minimum (with respect to w and b) one obtains:

w wo(~)
OL(w, b, A) - ~_, « iy ix i 0, (43)

0 W = W0 =

i=l

O L (w , b, A) b=bo ~--d = yioti = O. (44)
Ob «,

292 CORTES AND VAPNIK

From equality (43) we derive

Wo = ~ oliYiXi, (45)
i=1

which expresses, that the optimal hyperplane solution can be written as a linear combina-

tion of training vectors. Note, that only training vectors xi with ~i > 0 have an effective

contribution to the sum (45).

Substituting (45) and (44) into (42) we obtain

1
W (A) : ~ o~ i - - ~ w 0 • Wo (46)

i=1

1 e e

= Z oti- "~ Z 2 oti«jyiyjxi .xj. (47)
i=1 i=l j = l

In vector notation this can be rewritten as

W(A) = A r l - 1 A T D A , (48)
2

where 1 is an l-dimensional unit vector, and D is a symmetric £ x &matr ix with elements

Dij : yiyjxi • xj.

To find the desired saddle point it remains to locate the maximum of (48) under the

constraints (43)

ATY = 0,

where yT = (Yl Ye), and

A > 0 .

The Kuhn-Tucker theorem plays an important part in the theory of optimization. Ac-

cording to this theorem, at our saddle point in wo, bo, Ao, any Lagrange multiplier «o and

its corresponding constraint are connected by an equality

oli[Yi(Xi • Wo + bo) - l] = 0, i = 1 ~.

From this equality comes that non-zero values «i are only achieved in the cases where

Yi (xi • W 0 -~- b0) - 1 = 0.

In other words: «i ¢ 0 only for cases were the inequality is met as an equality. We call

vectors xi for which

Yi (Xi - WO -k- bo) = 1

for support-vectors. Note, that in this terminology the Eq. (45) states that the solution vector

Wo can be expanded on support vectors.

SUPPOR%VECTOR NETWORKS 293

Another observation, based on the Kuhn-Tucker Eqs. (44) and (45) for the optimal

solution, is the relationship between the maximal value W(A0) and the separation distance

Po:

w o . w o = E ° t °y ix i 'w° = E °e°(1 - yibo)= E °t°"
i=1 i=1 i=1

Substituting this equality into the expression (46) for W(Ao) we obtain

* 1 w o • w o
W(Ao) = ~ o , ° - ~wo. wo- ~ -

i=1

Taking into account the expression (13) from Section 2 we obtain

2
W(Ao) »° 2,

where Po is the margin for the optimal hyperplane.

A.2. Soff Margin Hyperplane Algorithm

Below we first consider the case of F(u) = u k. Then we describe the general result for a

monotonic convex function F(u).

To construct a soft margin separating hyperplane we maximize the functional

1 (~)~
= - w . w + C ~i ,

2
k > l ,

under the constraints

yi(xi - W -t- b) > 1 -- ~i, i = 1 •, (49)

~i > 0, i = 1 e. (50)

The Lagrange functional for this problem is

L(w, ~, b, A, R)

1 g g
= - - W " W + C ~i - o l i [Y i (X i • W + b) - 1 + ~i] - r i ~ i , (5 1)

2 _ i=1

where the non-negative multipliers A r = (oq, oe2 Œl) arise from the constraint (49),

and the multipliers R r = (rl, re rt) enforce the constraint (50).

We have to find the saddle point of this functional (the minimum with respect to the

variables wi, b, and ~i, and the maximum witll respect to the variables oei and ri).

Let us use the conditions for the minimum of this functional at the extremum point:

OL e
= WO - - E o t i Y i X i ~- O,

w=wo i = I

(52)

294 CORTES AND VAPNIK

OL e

: y ~ o t i y i ~ - O,

" ~ b=bo i=I

~/~0~ (~ 1 ~-1 O L = k C ~o _ ol i _ ri"

(53)

(54)

If we denote

, (±)~
Z~«°=
i= l ~k C k ,] '

(55)

we can rewrite Eq. (54) as

~ - - Oli - - r i = 0 . (56)

From the equalities (52)-(55) we find

W O = Z o l i Y i X i ,

i=1

_ o t i Y i = O,

i=1

8 = ot i "-I- r i .

(57)

(58)

Substituting the expressions for Wo, bo, and 8 into the Lagrange functional (51) we obtain

W (A ' 8) = Y~~°ti--2 i~.a j~l .= .= (kC)l/k_ 1 1-- . (59)

To find the soft margin hyperplane solution one has to maximize the form functional

(59) under the constraints (57)-(58) with respect to the non-negative variables «i, ri with

i = 1 I. In vector notation (59) can be rewritten as

W(A, ô) = A r l - A ~ D A + (k C) l / ~ _ l 1 - , (60)

where A and D are as defined above. To find the desired saddle point one therefore has to

find the maximum of (60) under the constraints

and

A T y = 0, (61)

A + R = 81, (62)

A > 0, (63)

R > 0. (64)

From (62) and (64) one obtains that the vector A should satisfy the conditions

0 < A < 81. (65)

S U P P O R T - V E C T O R N E T W O R K S 295

From conditions (62) and (64) one can also conclude that to maximize (60)

3 = 0tma x = m a x 0 x l o~e).

Substituting this value of ~ into (60) we obtain

W(A) = A T I _ [1ATDA + °tkm/kaZ . (l - k)]
(k C) l / k - 1

(66)

To find the soft margin hyperplane one can therefore either find the maximum of the quadratic

form (51) under the constraints (61) and (65), or one has to find the maximum of the convex

function (60) under the constraints (61) and (56). For the experiments reported in this paper

we used k = 2 and solved the quadratic programming problem (51).

For the case of F(u) = u the same technique brings us to the problem of solving the

following quadratic optimization problem: minimize the functional

1 r
W(A) = AT1 -- - A DA,

2

under the constraints

and

O < A < C 1 ,

A T y = 0.

The general solution for the case of a monotone convex function F(u) can also be obtained

from this technique. The soft margin hyperplane has a form

e

w --~ ~ _ ~ i Y i X i ,
i=1

where Ao r = (n ° oe °) is the solution of the following dual convex programming prob-

lem: maximize the functional

W (A) = A r l - [1 A r D A + (o t m a ~ f - I (- ~)) - C F (f - 1 (~ - ~)) I ,

A T y = 0,

A>_0,

where we denote

f (u) = F'(u).

For convex monotone functions F(u) with F(O) = 0 the following inequality is valid:

uF'(u) > F(u).

Therefore the second term in square brackets is positive and goes to infinity when Otmax goes

to infinity.

under the constraints

296 CORTES AND VAPNIK

Finally, we can consider the hyperplane that minimizes the form

- - W • W - I - ~ i
2

subject to the constraints (49)-(50), where the second term minimizes the least square value

for the errors. This lead to the following quadratic programming problem: maximize the

functional

1 [A r D A + I A r A] (67) W(A) = A ~ I - ä

in the non-negative quadrant A _> 0 subject to the constraint ATy = 0.

Notes

I. The optimal coefflcient for ~ was found in the sixties (Anderson & Bahadur, 1966).

2. Recall Fisher's concerns about small amounts of data and the quadratic discriminant function.

3. With this name we emphasize how crucial the idea of expanding the solution on support vectors is for these

learning machines. In the support-vectors learning algorithm the complexity of the construction does not

depend on the dimensionality of the feature space, but on the number of support vectors.

4. Note that in the inequalities (9) and (10) the right-hand side, but not vector w, is normalized.

5. A training error is here defined as a pattern where the inequality (22) holds with ~ > 0.

6. The decision function is unique but not its expansion on support vectors.

7. National Institute for Standards and Technology, Special Database 3.

References

Aizerman, M., Braverman, E., & Rozonoer, L. (1964). Theoretical foundations of the potential function method

in pattern recognition learning. Automation and Remote Control, 25:821-837.

Anderson, T.W., & Bahadur, R.R. (1966). Classification into two multivariate normal distributions with different

covariance matrices. Ann. Math. Stat., 33:420--431.

Boser, B.E., Guyon, I., & Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. In Proceedings

of the F(fth Annual Worlaghop of Computational Learning Theory, 5, 144-152, Pittsburgh, ACM.

Bottou, L., Cortes, C., Denker, J.S., Drucker, H., Guyon, I., Jackel, L.D., LeCun, Y., Sackinger, E., Simard, P.,

Vapnik, V., & Miller, U.A. (1994). Comparison of classifier methods: A case study in handwritten digit

recognition. Proceedings of 12th International Conference on Pattern Recognition and Neural Network.

Bromley, J., & Sackinger, E. (1991). Neural-network and k-nearest-neighbor classifiers. Technical Report 11359-

910819-16TM, AT&T.

Courant, R., & Hilbert, D. (1953). Methods ofMathematical Physics, Interscience, New York.

Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugenics, 7:111-132.

LeCun, Y. (1985). Une procedure d'apprentissage pour reseau a seuil assymetrique. Cognitiva 85: A la Frontiere

de l'Intelligence Artificielle des Sciences de la Connaissance des Neurosciences, 599-604, Paris.

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., & Jackel, L.D. (1990). Handwritten

digit recognition with a back-propagation network. Advances in Neural Information Processing Systems, 2, 396-

404, Morgan Kaufman.

Parker, D.B. (1985). Learning logic. Technical Report TR-47, Center for Computational Research in Economics

and Management Science, Massachusetts Institute of Technology, Cambridge, MA.

Rosenblatt, F. (1962). Principles ofNeurodynamics, Spartan Books, New York.

SUPPORT-VECTORNETWORKS 297

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning intemal representations by backpropagating

errors. Nature, 323:533-536.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1987). Learning intemal representations by error propagation.

In James L. McClelland & David E. Rumelhart (Eds.), Parallel Distributed Processing, 1, 318-362, MIT Press.

Vapnik, V.N. (1982). Estimation ofDependences Based on Empirical Data, Addendum 1, New York: Springer-

Verlag.

Received May 15, 1993

Accepted February 20, 1995

Final Manuscript March 8, 1995

