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Abstract: In conservation biology, uncertainty about the choice of a statistical model is rarely considered.
Model-selection uncertainty occurs whenever one model is chosen over plausible alternative models to represent
understanding about a process and to make predictions about future observations. The standard approach to
representing prediction uncertainty involves the calculation of prediction (or confidence) intervals that incor-
porate uncertainty about parameter estimates contingent on the choice of a “best” model chosen to represent
truth. However, this approach to prediction based on statistical models tends to ignore model-selection uncer-
tainty, resulting in overconfident predictions. Bayesian model averaging (BMA) has been promoted in a range
of disciplines as a simple means of incorporating model-selection uncertainty into statistical inference and pre-
diction. Bayesian model averaging also provides a formal framework for incorporating prior knowledge about
the process being modeled. We provide an example of the application of BMA in modeling and predicting the
spatial distribution of an arboreal marsupial in the Eden region of southeastern Australia. Other approaches
to estimating prediction uncertainty are discussed.

El Uso de Promedios de Modelo Bayesiano para Mejorar la Representación de la Incertidumbre en Modelos
Ecológicos

Resumen: La incertidumbre acerca de la elección de un modelo estadı́stico es raramente considerada en
bioloǵıa de la conservación. La incertidumbre de selección de modelo ocurre cuando se selecciona un modelo
entre otros posibles modelos alternativos para representar el entendimiento de un proceso y para hacer predic-
ciones acerca de observaciones futuras. El método estándar para representar la incertidumbre de predicciones
implica el cálculo de intervalos de predicción (o confianza) que incorporan la incertidumbre en estimaciones
de parámetros dependiendo de la selección de un modelo “mejor” seleccionado para representar la verdad.
Sin embargo, este método de predicción basado en modelos estadı́sticos tiende a ignorar la incertidumbre de
selección de modelo, lo que resulta en predicciones demasiado confiadas. El promedio de modelo Bayesiano
(PMB) ha sido promovido en varias disciplinas como un medio simplificado para incorporar la incertidumbre
de selección de modelo en la inferencia y predicción estadı́stica. El PMB también proporciona un marco formal
para la incorporación de conocimiento previo acerca del proceso a modelar. Proporcionamos un ejemplo de
la aplicación de PMB en el modelado y predecimos la distribución espacial de un marsupial arbóreo en la
región Edén del sureste de Australia. Se discuten otros métodos para estimar la incertidumbre de predicción.

Model Uncertainty

A critical aspect of conservation biology involves predict-
ing the efficacy or impacts of different management strate-
gies. Biologists often seek to make predictions about un-
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known quantities, such as the probability of occurrence
or the future population size of a threatened species,
based on a set of things that are known, such as aspects of
the environment or the biology of a species. The true re-
lationship between the attribute to be predicted and the
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information at hand is seldom known, so a model is relied
upon to formalize a judgment about the relationship. A
model will generally comprise two parts: a structure and
a set of parameter estimates specific to that structure. In
the case of population models, model structure may be
defined by the presence or absence of stochasticity and in-
dependent variables and functions that describe features
such as competition, density dependence, spatial struc-
ture, and genetic drift. In the case of habitat models, the
choices of link function, variables, transformations, and
interactions define the structure. For example, Linden-
mayer (1990a) developed a habitat model to predict the
probability of occurrence (y) of the greater glider (Petau-
roides volans) as a function of the age of the forest (a) and
the number of trees (>0.5 m in diameter) with cavities in
a given 3-ha cell (n):

ln

(
y

1 − y

)
= −0.993 + 1.106a + 0.554n. (1)

In this example, the structural choices or assumptions
made by the authors include (1) the choice of the vari-
ables a and n and the exclusion of a range of other possible
predictors relating to demographic processes or the forag-
ing, denning, and metabolic requirements of the species,
(2) a logit link function rather than probit or other alter-
natives, and (3) simple linear relationships involving no
transformation of or interaction between the predictor
variables.

Clearly, a large range of alternative models might result
from the combination of the possible assumptions listed
above. In practice, the structural features of the model
are often determined by some data-driven search for the
“best” model from the range of possible models. Once the
model structure is chosen, the estimation of parameters
(such as fitting of regression coefficients) follows.

The search for the best model structure recognizes the
existence of more than one candidate model. This implies
a level of uncertainty associated with the choice of model
structure that is usually ignored when it comes to making
predictions and computing prediction intervals with the
chosen best model. The best model is assumed to have
correct structure, and uncertainty in parameter estimates
is the only form of uncertainty considered in making pre-
dictions. This assumption is tenuous given that errors aris-
ing from uncertainty about the structure of the model are
likely to be far worse than those arising from other sources
(Chatfield 1995). This is particularly relevant in ecologi-
cal models, in which uncertainty about model structure
is usually high (Conroy et al. 1995). Thus, the assump-
tion that a single “true” model exists is rarely justified
(Reichert & Omlin 1997), and alternative model struc-
tures can result in very different predictions (Pascual et
al. 1997; Beissinger & Westphal 1998).

In some instances, the choice of model structure may
be obvious, based on the subject matter or the design of a

study. For example, geometry or allometric relationships
may determine model structure in physiological models
(Porter et al. 2000). This is rarely the case in observa-
tional studies in ecology, however, where there is often
a great deal of ambiguity about the processes involved in
determining the true value of the response. Where there
is ambiguity about the true model structure in regression
analysis, automated variable-selection methods are com-
monly used to search large sets of candidate predictors
for plausible model structures (e.g., Loyn et al. 2001).
The propensity of automated variable-selection methods
to choose variables with no real relationship to the depen-
dent variable (Derksen & Keselman 1992) is an example
of a common source of structural uncertainty that is sel-
dom acknowledged.

If a number of possible model structures fit the ob-
served data almost as well as the chosen best structure,
there will be considerable uncertainty about which model
is in fact the best. If a plausible alternative model struc-
ture results in predictions that are different from those
of the chosen best model, there is some risk involved in
bravely ignoring the alternative argument(s) and putting
all eggs in one basket. A more conservative approach is to
consider any given model as a sample from a large set of
competing models and then use data to weight or assign
a degree of belief to the competing models.

Broadly speaking, approaches for incorporating model-
selection uncertainty in prediction fall into three cate-
gories. The first approach is to do nothing. This is the
simplest and most popular method, based on a data-driven
search for a single best model and selection criteria that
appeal to the conceptual trade-off between bias and vari-
ance (Burnham & Anderson 1998). Prediction and esti-
mation of precision are undertaken on the assumption
that the best model is the true model and uncertainty
exists solely in the estimation of model parameters (or
coefficients in the regression context).

A second approach is discrete model averaging (Draper
1995). The fundamental goal of model averaging is to ar-
rive at a set of plausible models that can be weighted
according to some criteria, usually associated with their
likelihood given a set of data. This weighting reflects the
degree to which each model is trusted. Predictions are
then derived as a weighted average of the predictions
from each model in the plausible set, and prediction un-
certainty is estimated as a weighted sum of the within-
and between-model variance. Discrete model averaging
is “discrete” because weighted averages are constructed
for a predetermined subset of all possible models. In the
example below, we used a method to define a discrete
sample of models from the full model space.

A third approach is continuous model averaging.
Draper (1995) introduced the concept of “model expan-
sion,” whereby a single structural choice is expanded
in directions suggested by the context or the analytic
search that specified the favored model. Markov chain
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Monte Carlo (MCMC) methods provide a vehicle for
“continuous” (rather than discrete) expansion of the
model structure by iteratively sampling from the full
range of prior distributions of parameters in the con-
struction of posterior parameter distributions. Applying
MCMC in regression problems that involve numerous can-
didate predictors, possible interactions, and transforma-
tions can be complex, and ensuring convergence and
adequate mixing may be problematic. This complexity
is compounded by a lack of access to MCMC appli-
cations in standard statistical software. This approach
warrants further investigation for ecological application,
however, because some suitable packages are being de-
veloped, but this is outside the scope of our paper.
See Fleishman et al. (2001) for one conservation ap-
plication. Detailed descriptions of the use of MCMC
in model-selection problems are available (George &
McCulloch 1995; Raftery et al. 1997).

A Framework for Dealing with Model Uncertainty

The frequentist approach to inference and prediction
does not adapt naturally to coping with model uncertainty
(Chatfield 1995), owing to an absence of formal methods
for deriving and incorporating posterior model probabili-
ties. Because the bulk of biologists tend to favor frequen-
tist methods, this may partly explain why model uncer-
tainty is so seldom reported in biological examples of
inference and prediction. Buckland et al. (1997) describe
an ad hoc approach based on the bootstrap to account
for uncertainty in model selection in a frequentist way.
We show, however, that model averaging fits more nat-
urally within the formal Bayesian theoretical framework,
making it an appealing approach to incorporating model-
selection uncertainty in inference and prediction. In this
section we aim to illustrate the simplicity with which es-
timating model uncertainty may be handled in a Bayesian
way. Ellison (1996) and Wade (2000) review the general
use of Bayesian methods in conservation biology.

A model space (M) may be defined as a set of possible
model structures (Si) and a set of parameter vectors (θi)
that are specific to each structure. After collecting some
data (D), a biologist might attempt to predict the prob-
ability of a future outcome (�), such as the occurrence
of a species (� = 1), via the probability model (Raftery
1996):

Pr(� | D) =
I∑

i=1

Pr(� | Si, D) Pr(Si | D), (2)

where Si are the competing models from the model space
M; Pr(Si | D) is the posterior model probability and rep-
resents the degree of belief in model Si given the data
collected and the prior belief (if there was one) before
the data were collected; and Pr(� | Si, D) represents a

(posterior) prediction of � according to model Si and
the data (D) used to parameterize the model.

The Pr(� | D) represents a prediction for � that is a
weighted average of the predictions from each of the
models Si. The weight assigned to the prediction from
any one of the Si is the posterior probability (or degree of
belief ) Pr(Si | D) in that model, given the data and prior
knowledge. It is the incorporation of the posterior model
probability in the prediction of � that provides the ex-
plicit recognition of model uncertainty that is missing
in classical frequentist analysis. The main questions are,
then, how are the competing models (Si) identified, and
how should posterior probabilities be assigned?

Identifying Competing Models

In some instances, a small set of competing models may
represent well-defined schools of thought or compet-
ing hypotheses about a biological process. For example,
when the long-term viability of a species is analyzed by
PVA, there may be a limited number of theoretical models
to explain the population dynamics of the species being
considered. In these “discrete” situations, the only imped-
iment to a simple BMA analysis is the identification of a
coherent scheme for assigning posterior model probabil-
ities to candidate models. In many modeling situations,
however, the number of candidate variables, functional
forms, and transformations can be great, in which case
the number of possible model structures becomes enor-
mous. Approaches have been developed to reduce the
size of the problem. The “leaps and bounds” algorithm
(Furnival & Wilson 1974), used in the example below,
provides a method for identifying the sample of models
representing the full model space. Selection of stochas-
tic search variables (George & McCulloch 1995), MCMC,
and importance sampling are alternative approaches to
sampling from the model space, although we could not
find any applications of these three approaches in logistic
regression.

Assigning Model Posterior Probabilities

Bayes’s Theorem is easily extended to enable the calcu-
lation of the posterior probability of model Si (Hoeting
et al. 1999):

Pr(Si | D) = Pr(D | Si) Pr(Si)∑s
k=1 Pr(D | Sk) Pr(Sk)

, (3)

where Pr(Si) is the prior probability (or belief ) in model
Si, and

Pr(D | Si) =
∫

Pr(D | θi, Si) Pr(θi | Si)dθi (4)

is the integrated likelihood of model Si, which provides
a measure of how much the data support each model.
The θi is the vector of parameters of model Si (e.g., for
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regression θ = [β, σ 2]); Pr(θi | Si) is the prior density of
θi under Si; and Pr(D | θi, Si) is the likelihood of observ-
ing the data given the estimated parameters specific to
Si. Although this appears to be an imposing number of
parameters, likelihoods, and conditional distributions to
deal with, it can be seen from the regression example
below that the necessary elements are often able to be
directly estimated by or are by-products of model-fitting
in standard statistical packages.

The integral in Eq. 4 can be hard to compute
(Hoeting et al. 1999). A simpler approach is to use the
“BIC (Bayesian information criterion; Schwarz 1978) ap-
proximation” based on the Laplace method (Tierney &
Kadane 1986). The BIC approximation for determining
posterior model probabilities is accurate when sample
sizes are large enough (>20 times the number of predic-
tors) (Kass & Raftery 1995), and its use has been justified
by several authors (e.g., Hoeting et al. 1999; Volinsky &
Raftery 2000). Therefore, we utilized the BIC approxi-
mation as a simple means of assigning posterior model
probabilities.

Specifying Prior Distributions

Bayesian model averaging requires the specification of
prior distributions for the parameters Pr(θi | Si) and the
models Pr(Si). The use of prior knowledge or beliefs has
been interpreted as both the strength and weakness of the
Bayesian approach to inference and prediction. On the
one hand, the formal role of prior knowledge in Bayesian
analysis provides a natural framework for combining new
and existing information in an adaptive management cy-
cle (Ellison 1996). However, prior distributions can be
difficult to specify (Clyde 1999) and, if handled poorly,
may lead to undesirable behavior of the posterior distri-
bution (Berger 1985). Specification of prior distributions
is often subjective (Ellison 1996), although it is clear from
Bayes’s theorem that if the evidence provided by the data
is compelling, the likelihood will dominate the posterior
and the prior will have little effect. If the data are not com-
pelling, there are no grounds on which to alter current
(possibly subjective) beliefs, so it makes sense that the
prior should dominate the posterior. The advantage of the
Bayesian approach to model averaging is that it provides
a coherent and intuitive theoretical framework, encour-
ages the quantification of prior knowledge, and, in doing
so, forces transparency about subjective assumptions. It
also encourages users to identify forms of objective prior
information such as alternative data sources. The disad-
vantage is that it requires the specification of prior distri-
butions, even when no strong prior information exists. In
situations such as exploratory data analysis, where little
if any prior belief exists, it is necessary to specify objec-
tive (or uninformative) prior distributions in order to use
the Bayesian formulation without biasing results. Consid-
erable work has been invested in developing objective

prior distributions for Bayesian analysis ( Jeffreys 1961;
Raftery 1996; Clyde 2000).

When prior information about the importance of a vari-
able is available for model structures with a coefficient
associated with each predictor (e.g., generalized linear
models), a prior probability on model Si can be specified
as (Hoeting et al. 1999):

Pr(Si) =
p∏

j=1

π
δi j

j (1 − π j )
1−δi j , (5)

where π j is the prior probability that variable j has a non-
zero coefficient (θij �= 0), and δij (taking a value of 0
or 1) indicates whether variable j is included in model Si.
Assigning π j = 0.5 for all j corresponds to a uniform prior
across the model space.

Using a model-selection criteria such as AIC (Akaike’s
information criteria; Akaike 1973) or BIC precludes
the need to explicitly specify a prior distribution for
the parameters Pr(θi | Si). These criteria correspond to
prior distributions that are proper but uninformative
(Clyde 2000). For example, BIC defines an implicit prior
distribution—a normal distribution centered around θi—
with the amount of information in the prior equal to the
average amount of information in one observation (Volin-
sky & Raftery 2000).

Debate over the use of AIC and BIC as the optimal
model-selection criteria is unresolved, although it is clear
that BIC favors smaller, less complicated model struc-
tures. The use of BMA based on BIC has precedent in the
statistical literature (Raftery 1996; Hoeting et al. 1999),
based on the fact that BIC is an approximation to twice
the log of the Bayes factor, the standard test statistic in
Bayesian hypothesis testing. The usual justification of AIC
provides no way of taking into account model uncertainty
(Clyde 2000). Clyde (2000) provides a convenient repre-
sentation of model-selection criteria in which a change
in a single parameter allows the user to implement AIC,
BIC, or several other options. Clyde’s formulation (CIC:
calibrated information criterion) provides a Bayesian jus-
tification for the entire family of criteria, derived from
Jeffrey’s prior distribution ( Jeffreys 1961).

In the example below, we used objective prior dis-
tributions for Pr(θi | Si) and Pr(Si) developed by Clyde
(2000) that make use of readily available summary statis-
tics such as AIC and BIC, derived from standard statistical
packages.

An Example of Bayesian Model Averaging: Inferring
Habitat Preferences and Predicting the Spatial
Distribution of the Greater Glider

Background

Wildlife habitat models that quantify the relation-
ship between the occurrence of species and habitat
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characteristics have been used throughout the world
in resource analysis and conservation planning exer-
cises (Pereira & Itami 1991; Mladenoff & Sickley 1998;
Queensland Government 1998; Li et al. 1999; Loyn et al.
2001). The purpose of our example is to demonstrate
how the single best model approach to habitat modeling
can be extended easily to the BMA approach, which en-
ables incorporation of model-selection uncertainty in in-
ference, predictions, and prediction intervals. We demon-
strate how the structural uncertainty of models affects
their inference about key species–habitat relationships,
their predictive accuracy, and the coverage of their pre-
diction intervals.

The greater glider (Petauroides volans; Kerr 1792) is
a marsupial glider endemic to eastern Australia. Being an
obligate cavity nester, it is dependent on elements of old
forest (Lindenmayer et al. 1990a) and consequently is
of conservation concern in areas subject to timber har-
vesting. Habitat models were constructed using logistic
regression (McCullagh & Nelder 1989) to describe the re-
lationship between the probability of occurrence of the
greater glider and habitat attributes such as vegetation
type, forest age, climate, and topography. There are nu-
merous precedents for using logistic regression and other
generalized linear models (GLMs) in habitat analyses (e.g.,
Nicholls 1989; Pereira & Itami 1991; Buckland & Elston
1993). However, no example of an explicit treatment of
model-selection uncertainty in wildlife habitat modeling
could be found, despite the compelling arguments and
methods proposed by Buckland et al. (1997).

The Species

The greater glider is an arboreal, folivorous, gliding marsu-
pial whose distribution extends from southern Australia
to just north of the tropic of Capricorn (McKay 1995).
A considerable amount of research has been devoted
to exploring its habitat preferences (e.g., Kavanagh &
Lambert 1990; Lindenmayer et al. 1990a), distribution
(New South Wales National Parks and Wildlife Service
1998), population ecology (Possingham et al. 1994), phys-
iology (Foley et al. 1990), sociology (Henry 1984), and
response to logging (Kavanagh 2000).

The Habitat Variables

Cork and Catling (1996) categorize the bulk of studies
on arboreal mammals into those pursuing the hypothesis
that the foliar nutrient status of the forest is the prime de-
terminant of habitat quality (Braithwaite 1983) and those
that put equal or greater emphasis on variables related
to structural characteristics of the forest. Significant re-
lationships with variables describing forest structural at-
tributes such as stand basal area, presence of trees with
hollows, old-growth forest patch size, and time since log-
ging have been reported (e.g., Lindenmayer et al. 1990a;
Kavanagh & Bamkin 1995). Other researchers have found

significant relationships between greater glider presence
and forest type, tree species, and foliar nutrient indices
(e.g., Braithwaite et al. 1988; Kavanagh & Lambert 1990).
Lindenmayer et al. (1990b) and Pausas et al. (1995) found
that indirect surrogates of shelter, nutrition, or mobility,
such as slope and topographic position, are good predic-
tors of arboreal marsupial habitat. Climatic variables are
likely to affect the distribution of greater glider habitat
on a broad scale because of thermal and physiological
constraints (Porter et al. 2000). We compiled a list of un-
correlated (R ≤ 0.6) candidate predictors based on these
habitat analyses (Table 1).

Study Area and Glider Surveys

Fauna surveys were conducted in southeastern Australia
(Fig. 1) in 1992 and 1994 by Kavanagh and Bamkin
(1995) and Kavanagh (1997), providing 219 observations
of greater glider presence or absence for model building
and 187 separate and independent observations of pres-
ence or absence for model testing.

Model Building

PRIOR DISTRIBUTIONS

In many data-exploration exercises, including our exam-
ple, there may be little information available for eliciting
prior distributions Pr(θi | Si) and Pr(Si). Moreover, where
the number of predictor variables is large (>10) and trans-
formations and polynomial terms are considered likely,
the elicitation of subjective prior distributions can be-
come extremely complicated. In this context, “uninfor-
mative” prior distributions that, a priori, make all models
and parameters equally likely are appealing.

As discussed previously, using model-selection criteria
such as AIC and BIC removes the need to explicitly specify
Pr(θij | Si). We implemented BMA with both AIC and BIC
with Clyde’s CIC objective prior formulation, amounting
to the specification of a uniform prior Pr(Si) and prior
distributions with uninformative proper parameters.

POSTERIOR DISTRIBUTIONS

In our regression problem, uncertainty about the pre-
dicted probability of occurrence of a greater glider
amounts to uncertainty about estimates of the coefficients
(θj) in a single model and the additional uncertainty about
which model to use. Consequently, the posterior distri-
butions of interest are (Clyde 2000)

Pr(θi | Si, D) = N(θ̂i, I (θ̂i)
−1), (6)

and

Pr(Si | D) = exp{1/2(Devi − di log(c))}∑I
i=1 exp{1/2(Devi − di log(c))} , (7)
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Table 1. Map layers used as candidate predictors of greater glider
habitat.

Variable name
(abbreviation) Description

Foliar nutrient
index
(foliar.nut)

binary variable derived from
Braithwaite’s foliar nutrient index
(New South Wales National Parks and
Wildlife Service 1998), which is based
on vegetation mapping (Keith &
Bedward 1999); 10 categories
reduced to 2 by imposing a threshold
at category 4 (on the basis of
preliminary data analysis)

Old-growth and
mature forest in
a 150-m radius∗

(old150)

context∗ variable that indicates the
number of 25-m grid cells classified as
old growth within a 150-m radius of
the target cell

Topographic
position
(topo.pos)

measure of the position of a cell on a
continuum between 0 (gully) to 100
(ridge) (New South Wales National
Parks and Wildlife Service 1998)

Wet forest within
150 m∗

(wetforest)

measure of the proportion of forest in a
150-m radius classified as wet forest
(Keith & Bedward 1999)

Rainforest within
150 m∗ (rf150)

measure of the proportion of forest in a
150-m radius classified as rainforest
(Keith & Bedward 1999)

Dry forest within
150 m∗

(dryforest)

measure of the proportion of forest
within 150 m classified as dry
schlerophyll forest (Keith & Bedward
1999)

Mean annual
temperature
(mean.temp)

derived from a DEM (Land Information
Centre 1997) using the ESOCLIM
module of ANUCLIM (Hutchinson et
al. 1999)

Wetness index
(wetness)

derived from the DEM (Land
Information Centre 1997) to indicate
the volume of water draining to a
100-m cell and its ability to retain the
water based on local slope

Solar radiation
index (solar)

derived from the DEM (Land
Information Centre 1997) and
ESOCLIM (Hutchinson et al. 1999) to
indicate the amount of solar radiation
that falls on each grid cell by allowing
for shade and shadow due to terrain
and atmospheric scattering

∗Context variables are those in which the value of each cell is a
function of the values of surrounding cells in a specified radius.

where Devi is the model deviance (−2∗[log likelihood])
under the null model minus the deviance under model
Si; di is the number of estimated parameters of model
Si ; I (θ̂i) is the observed Fisher information for Si eval-
uated at the maximum-likelihood estimates (MLEs) of
θ̂i ; and log(c) is a calibration constant determined by
the model-selection criteria used (Clyde 2000). For BIC,
log(c) = log(n), and for AIC, log(c) = 2. Fisher informa-
tion I (θ̂i) for model Si is X′

iV(θ̂i)Xi, where V(θ̂i) is the
covariance matrix for D, which can be calculated in any
statistical package that fits GLMs.

Figure 1. Glider survey locations in southeastern
Australia.

In our example, we sampled from the posterior distri-
butions of coefficients and models to examine perceived
species-habitat relationships, including the relationship
between glider occupancy and the proportion of old and
mature forest within the surrounding area. We compared
posterior distributions obtained under AIC and BIC prior
distributions to illustrate the combined effect of model-
selection criteria and parameter and model uncertainty
on model inferences about species-habitat relationships.

IMPLEMENTATION

Despite the rather arduous theoretical development and
justifications of BMA, the implementation in the regres-
sion context is simple. We implemented BMA for a
logistic-regression analysis of greater glider habitat re-
lationships with SPLUS (MathSoft 1997) code available
from the BMA website: http://www.research.att.com/∼
volinsky/bma.html entitled BMA.GLM. The BMA.GLM
function incorporates Clyde’s CIC prior and posterior
model distributions, allowing BMA under both BIC and
AIC prior distributions. The code utilizes the leaps-and-
bounds algorithm (Furnival & Wilson 1974) to rapidly
identify a suite of models representing the full model
space. The BMA.GLM function enables the selection of
polynomial terms in competing models for fitting non-
linear relationships. The BMA.GLM function also allows
the explicit allocation of prior probabilities that particular
candidate variables are non-zero, where there are grounds
to assign them. It requires minimal running time and nor-
mal SPLUS model-fitting inputs. The BMA.GLM function
reports a subset of candidate models, provides estimates
of posterior model probabilities, MLEs of coefficients, and
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standard errors of MLEs specific to each model, based on
both AIC and BIC model-selection criteria. Inferences and
predictions using the two criteria may then be compared.
Other code is available at the BMA website to implement
BMA for other linear models and survival analysis. These
methods are discussed in more detail by Hoeting et al.
(1999).

Running BMA.GLM requires only that the user specify a
vector of n binary observations ( y) that indicate the pres-
ence or absence of the species at the n survey locations,
an n × p matrix ( X ) corresponding to the measured val-

Figure 2. Plots of model space for
(a) Bayesian information criterion
(BIC) and (b) Akaike’s information
criteria and (c) corresponding
maximum-likelihood estimates
(MLEs) of odds ratios for two
habitat attributes under BIC. The
inclusion of particular predictors
(listed on the x-axis) in any given
model (models 1–10 are listed on
the y-axis) is indicated by a white
square. Models 1–10 (on the y-axis)
are presented in rank order of
posterior probability (that the
particular model is the “true”
model). Plot (c) demonstrates the
uncertainty in model-specific
estimates of coefficients for old150
and rf150 by “linking” the BIC
model space to model-specific MLEs
of odds ratios for the two habitat
predictors. Horizontal bars represent
95% confidence intervals on MLEs of
odd ratios. An odds ratio of 1
(represented by the dashed vertical
line) implies that variable has no
effect on species occupancy.
Predictor abbreviations are defined
in Table 1.

ues of the p predictors at each of the n survey locations.
The number of predictors that will take polynomial forms,
the GLM family, and the model-selection criteria to be
used (AIC or BIC) are all specified as arguments in the
call to BMA.GLM from within SPLUS.

Model Uncertainty and Inference about
Species-Habitat Relationships

We identified 62 competing models under AIC and 42
under BIC with the leaps-and-bounds component of
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BMA.GLM. Ten of the most likely models from the two
model spaces (defined under BIC and AIC prior distribu-
tions) are presented in Fig. 2. The posterior probabilities
of the top 10 models were separated by <0.07 under
both selection criteria, indicating a high degree of model
uncertainty. The extra leniency afforded by the AIC ap-
proach to inclusion of variables resulted in the selection
of larger, more complex models (Fig. 2). A number of the
variables consistently present in AIC-selected models are
only occasionally selected in BIC models. This highlights
the magnitude of model uncertainty that may go unno-
ticed when only one model-selection criteria is used to
construct models, as is often the case in species-habitat
analyses.

Inference under Model Uncertainty

For compactness, we focused on the effect of model un-
certainty on inferences about two candidate predictors of
greater glider habitat: the proportion of old and mature
forest in the surrounding area (old150) and the propor-
tion of rainforest in the surrounding area (rf150). To avoid
cumbersome graphical representations of our results, we
focus this analysis on the top 10 models selected under
both AIC and BIC model-selection approaches, though
under normal circumstances a greater number of plausi-
ble models could easily be considered. Models selected
by AIC contained old150 and rf150 much more often than
those selected by BIC (cf. Fig. 2a & 2b). Under AIC both
variables were always included in the 10 most likely mod-
els, whereas under BIC there was a great deal of uncer-
tainty about the importance of the two variables, with
50% representation of both variables in the top 10 mod-
els. Unlike other predictors such as mean temperature,
which was consistently represented in both the AIC and
BIC models, there was more uncertainty about the im-
portance of the two predictors old150 and rf150 than the
AIC approach would indicate in isolation. Between-model
variation in the (non-zero) MLEs of old150 and rf150
coefficients under BIC was substantial (Fig. 2c). Non-
zero MLEs of odds ratios for the effect of old150 on the
probability of observing a greater glider varied between
1.1 and 1.18. The odds ratio for a given variable in a given
model represents the predicted multiplicative increase in
the probability of a positive outcome (e.g., occurrence of
a greater glider) resulting from a unit increase in the in-
dependent variable (Agresti 1996). For example, an odds
ratio of 1.15 (for old150 in the second-best BIC model)
indicated that a one-unit (10%) increase in the propor-
tion of old forest in the neighborhood of a site results in
a 15% increase in the probability of a greater glider oc-
currence at the site. The horizontal lines correspond to a
95% confidence interval on the MLE of the odds ratio.

The magnitude of the coefficient uncertainty varied be-
tween models, as did model-specific inferences about the
effect of old150 on the odds of finding a greater glider un-

der the BIC-selected models (Fig 3a). Uncertainty about
model-specific inference was less apparent in the AIC-
selected models (Fig. 3b). The middle layer of the plots
in Fig. 3 represents model uncertainty and was obtained
by jointly sampling the model posterior distribution (con-
ditional on the inclusion of old150) and point estimates
of coefficients (ignoring coefficient uncertainty). These
plots show uncertainty about the coefficient estimate for
old150 between models that contained it. Obviously, the
level of model uncertainty associated with the coefficient
would increase as a result of sampling from models that
did not contain it (i.e., where MLEold150 = 0).

Finally, combined model and parameter uncertainty
was demonstrated by the density of 10,000 samples taken
jointly from Pr(Si | D) and Pr(θi | D, Si), conditional on the
inclusion of old150. This density was equivalent to the
model-averaged posterior distribution of the old150 odds
ratio. A notable feature of the BIC model-averaged distri-
bution of old150 was that the mass of the distribution
shifted left, to better represent the combined inference
about old150 across models that include it (Fig. 3a). It
is also notable that the absolute magnitude of variation
in the BMA estimate of the old150 odds ratio was not
substantially greater than the variation in the single, best
estimate under both AIC and BIC. This is partly because
the standard errors of MLEs for the old150 parameter
were lower in some of the plausible alternative models
in the model space and because models that did not in-
clude old150 were not incorporated in model-averaged
inference. Finally, it is apparent that inference based on
AIC alone would involve less hedging against model un-
certainty than inference based on BIC or both selection
criteria.

Comparing the Predictions of the Best Model and Bayesian
Model Averaging

Predictions for independent model-testing sites were
made with the best models obtained through AIC- and
BIC-based models selection and by using BMA under both
AIC and BIC prior distributions. The BMA predictions
were made by obtaining 10,000 samples jointly from pos-
terior distributions Pr(Si | D) and Pr(θi | D, Si). Each sam-
ple represents a vector of coefficient values that may be
applied in a logistic-regression model to make a predic-
tion about the probability of greater glider occurrence at
each of the 187 model testing sites. A Bayesian predictive
distribution of 1000 predictions was constructed at each
of the 187 test sites, from which a mean prediction and
90% probability interval were derived.

Discrimination is a measure of the ability of model pre-
dictions to distinguish correctly between presence and
absence sites. The area under the receiver operating char-
acteristics (ROC) curve has become a widely accepted
measure of binary model discrimination (Fielding & Bell
1997). The area under the ROC curve can range between
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Figure 3. Distributions of odds ratios for old150
incorporating parameter, model, and combined
model-parameter uncertainty (conditional on the
inclusion of old150) under both (a) Bayesian
information criterion and (b) Akaike’s information
criteria. Parameter uncertainty (the top layer) is
represented by the distributions of samples from the
model-specific coefficient posterior distributions
Pr(θi | D, Si) for the four best models (the posterior
distribution of the single best model is represented by
a solid black line). Model uncertainty (the middle
layer) is represented by the posterior distribution
Pr(Si | D). Combined parameter-model uncertainty
about the odds ratio for old150 (the bottom layer) is
the posterior distribution Pr(θi | D), derived by jointly
sampling Pr(θi | D, Si) and Pr(Si | D) 10,000 times. The
lines drawn vertically at the modes of the best-model
(dashed) and BMA (dotted) posterior distributions in
(a) highlights the shift in inference about the odds
ratio of old150 from the best model to the Baysian
model averaging model.

0 and 1, where a score of 1 implies perfect discrimination
and a score of 0.5 or less implies predictive discrimina-
tion that is no better than a random guess. Predictions
derived from the best-model and BMA approaches were
tested against observations at the 187 test sites, with the
area under the ROC curve as an index of predictive perfor-
mance. The best-model and model-averaged predictions
based on both AIC and BIC prior distributions performed
reasonably, well with the area under the ROC curve vary-
ing between 0.78 and 0.80 for all four sets of predictions.

Comparing Prediction Intervals Derived from Bayesian Model
Averaging with Those of the Best Model

As distinct from measures that indicate the accuracy of
predictions (such as the area under the ROC curve), pre-
dictive coverage describes the optimism of confidence
intervals. By comparing model prediction intervals, it is
possible to discern how overconfident we were about the
accuracy of our predictions.

Prediction intervals for the predictions of any single
model are easily computed with the point-wise standard
errors returned in a standard statistical package (Agresti
1996). Ninety percent prediction intervals based on the
best AIC and BIC model predictions were computed for
all 187 model testing sites. Computation of prediction
intervals for a BMA prediction requires the integration
of the intervals for each of the competing models. Pre-
diction intervals for BMA predictions were based on the
1000 predictions at each model testing location described
above. Choosing upper and lower limits such that 5% of
the predictive density (50 predictions) lay above the up-
per limit and 5% lay below the lower limit identified a
90% probability interval for each prediction.

Predictive coverage measures the performance of pre-
diction intervals according to how often the intervals
contain the new observations. Measuring the predictive
coverage of intervals that bound the probability of a bi-
nary outcome is complicated by the fact that observations
can only be either 0 or 1, but predictions are necessar-
ily probabilistic (0–1). Consequently, observations were
grouped into decile ranges of prediction to test how well
the observed proportion of positive observations con-
curred with the confidence intervals for the predicted
proportion (Fig. 4). This approach to testing binary model
predictions is the foundation of the Hosmer-Lemeshow
test and the calibration plot, two commonly used meth-
ods for testing how well model predictions are calibrated
(Miller & Hui 1991; Pearce & Ferrier 2000). For BIC mod-
els, the BMA prediction interval is substantially broader
than the interval for the single most likely model selected
under BIC because of the large amount of uncertainty
in BIC models (Fig. 4). Bounds on AIC and BMA predic-
tions (not presented) were slightly narrower, though still
broader than the best-model prediction intervals. The ob-
served proportions of greater glider presences fell within
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Figure 4. Ninety percent probability intervals for (a)
Bayesian model averaging (BMA) and (b) best-model
predictions based on Bayesian information criterion
(BIC) model selection. Ninety percent prediction
intervals are presented for each of the 187 predictions
made for model testing sites and are defined by
horizontal dashes. Ninety percent prediction intervals
for the BMA predictions are based on all 42 plausible
models identified under BIC model selection using the
the SPLUS function BMA.GLM. Crosses are the observed
proportion of greater glider presences in groups
defined by prediction deciles. A perfect match between
predictions and proportions of greater gliders observed
in prediction deciles would see the crosses lying on the
dotted line that runs diagonally through each plot.

the BMA prediction intervals in all instances, whereas
the best-model interval bounded the observed proportion
less often. This result is consistent with those of Raftery
(1996), Raftery et al. (1997), and Hoeting et al. (1999).

Interpretation

Our example demonstrates that inference about species-
habitat relationships based on one model alone is likely

to be näıve about the real uncertainty inherent in the
analysis. Based on the results of our example, if the rami-
fications of inferring the dependence of greater gliders on
old forest were large, ignoring model uncertainty about
such inference would be perilous. Given the ease with
which BMA.GLM is applied and the degree of insight it
may provide into model uncertainty, it is clearly a useful
tool for assessing species-habitat relationships and uncer-
tainty about the nature of the relationships.

In contrast to the studies by Draper (1995), Hoeting
et al. (1999), and others, the point-wise predictions of the
best model showed predictive performance in terms of
discrimination equivalent to those of the model-averaged
predictions. This may be due in part to the dominance
of one or two predictors in all of the models or to lack
of complete independence between the model-building
and model-testing data.

The usefulness of predictions can be thought of both
in terms of the proportion of times that the mean pre-
diction is correct and how well uncertainty about future
observations is estimated. In our example, the BMA pre-
diction intervals exhibited better coverage than those de-
rived from the best models. The inadequacy of standard
prediction intervals has been documented in a number of
examples based on real data (Draper 1995; Raftery et al.
1997; Hoeting et al. 1999) and simulated data (Hurvich
& Tsai 1990; Raftery et al. 1997).

Despite showing better predictive coverage than the
single-best-model prediction intervals, the BMA intervals
did not account for all forms of uncertainty inherent in
models and model predictions. The assumption that there
is no error in mapped variables and greater glider obser-
vation data likely contributed substantially to an under-
estimation of prediction uncertainty (Elith et al. 2002).
Methods for incorporating these types of uncertainty into
prediction intervals are poorly developed in ecology, de-
spite some precedents in the medical sciences (Magder
& Hughes 1997).

Conclusions

This work represents the first attempt to explicitly esti-
mate and incorporate model structural uncertainty into
the inference and predictions of species-habitat models.
Although we did not demonstrate that BMA predictions
are necessarily more accurate, we did demonstrate that
BMA provides a simple means for achieving a more sat-
isfactory treatment of inferential and prediction uncer-
tainty than currently accepted methods. On this basis,
we recommend at least a compromise between the selec-
tion of the best model and a model-averaging approach,
where point predictions might be derived from the best
model and uncertainty be ascertained by BMA.

We chose to highlight one simple approach to incorpo-
rating model uncertainty in prediction. There would be
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great value in a further detailed study that compares the
performance of the various methods available for treating
model uncertainty in an ecological context. In particular,
a thorough investigation into the value of MCMC, hierar-
chical, and bootstrap approaches is needed.

The credibility of predictions is of primary importance
to conservation decision-makers, who take financial, eco-
logical, and (sometimes) personal risks every time they
use the predictions of a model to make a decision. Hedg-
ing against uncertainty is an integral part of managing
those risks. Conservation biologists who best estimate
and communicate the uncertainty of their predictions will
be of most use to nervous decision-makers. Model aver-
aging is a logical and simple technique that can provide a
more realistic estimate of the uncertainty associated with
model predictions.
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