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Abstract--This paper introduces stacked generalization, a scheme for minimizing the generalization error rate 
of  one or more generalizers. Stacked generalization works by deducing the biases of  the generalizer(s) with 
respect to a provided learning set. This deduction proceeds by generalizing in a second space whose inputs are 
(for example) the guesses of  the original generalizers when taught with part of  the learning set attd trying to 
guess the rest o f  it, and whose output is (for example) the correct guess. When used with multiple generalizers, 
stacked generalization can be seen as a more sophisticated version of  cross-validation, exploiting a strategy more 
sophisticated than cross-validation's crude winner-takes-all for combhling the individual generalizers. When used 
with a single generalizer, stacked generalization is a scheme for estimating (and then correcting for) the error 
of  a generalizer which has been trained on a particular learning set and then asked a particular question. After 
introducing stacked generalization and justifying its ase, this paper presents two numerical experiments. The 
first demonstrates how stacked generalization improves upon a set of  separate generalizers for the NETtalk task 
of  translating text to phonemes. The second demonstrates how stacked generalization improves the performance 
of  a single surface-fitter. With the other experimental evidence in the literature, the usual arguments supporting 
cross-validation, and the abstract justifications presented in this paper, the conclusion is that for ahnost any real- 
world generalization problem one should use some version of  stacked generalization to minimize the generali- 
zation error rate. This paper ends by discussing some of  the variations of  stacked generalization, and how it 
touches on other fields like chaos theory. 

Keywords--Generalization and induction, Combining generalizers, Learning set preprocessing, cross-vali- 
dation, Error estimation and correction. 

1. I N T R O D U C T I O N  

This paper concerns the problem of inferring a func- 
tion from a subset of R" to a subset of RP (the parent  
function) given a set of m samples of that function 
(the learning set). The subset of R" is the input space, 
and the subset of R~' is the output  space. A question 
is an input space (vector) value. An algorithm which 
guesses a parent function, basing the guess only on 
a learning set of m R "+p vectors read off of that 
parent function, is called a generalizer. A generalizer 
guesses an appropriate output for a question via the 
parent function it infers from the learning set. For 
simplicity, although the analysis of this paper holds 
for any positive integer p, unless explicitly indicated 
otherwise I will always take p = 1. 

In this paper I am usually assuming noiseless data. 

This work was performed under the auspices of the Depart- 
ment of Energy. 

Requests for reprints should be sent to David H. Wolpert, 
Complex Systems Group, Theoretical Division, and Center for 
Non-linear Studies. MS B213. LANL, Los Alamos, NM 87545. 

241 

This means that the best guesses for the inputs of 
elements of the learning set are already known to 
us - - they  are provided by the learning set. Building 
a system to guess properly for those elements (i.e., 
"learning that learning set") is trivial, and can be 
achieved simply by building a look-up table. (Diffi- 
culties only arise when one insists that the look-up 
table be implemented in an odd way (e.g., as a feed- 
forward neural net).) Therefore,  in this paper the 
questions of interest are almost always outside of the 
learning set. 

Some examples of generalizers are back- 
propagated neural nets (Rumelhart  & McClelland, 
1986), Holland's (1975) classifier system, and Ris- 
sanen's (1986) minimum description length principle 
(which, along with all other schemes which attempt 
to exploit Occam's razor, is analyzed in (Wolpert, 
1990a)). Other  important examples are memory- 
based reasoning schemes (Stanfill & Waltz, 1986), 
regularization theory (Poggio et al., 1988), and sim- 
ilar schemes for overt surface fitting of a parent func- 
tion to the learning set (Farmer & Sidorowich, 1988; 
Omohundro,  1987; Wolpert, 1989; Wolpert 1990a; 
Wolpert, 1990b). 
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In this paper I will primarily be interested in gen- 
eralizers which are capable of guessing as output a 
number which does not occur as an output value in 
the learning set. Conventional classifiers (e.g., ID3 
(Quinlan, 1986), Bayesian classifiers like Schlim- 
reef's Stagger system (Dietterich, 1990), etc.) do not 
have this flexibility, although in all other respects 
they are valid examples of generalizers. 

This paper introduces stacked generalization, a 
technique whose purpose is to achieve a generali- 
zation accuracy (as opposed to learning accuracy) 
which is as high as possible. The central idea is that 
one .can do better than simply list all guesses as to 
the parent function which are consistent with a learn- 
ing set (as is done in PAC-style learning (Dietterich 
1990; Valiant 1984), for example). One can also use 
in-sample/out-of-sample techniques to try to find a 
best guesser of parent functions (or to try to find a 
best combination of guessers of parent functions). 
By creating a partition of the learning set, training 
on one part of the partition, and then observing be- 
havior on the other part, one can try to deduce (and 
correct for) the biases of one or more generalizers 
with respect to that learning set. Loosely speaking, 
in addition to finding all theories consistent with a 
set of data, by means of partitions of the data one 
can also construct a best theorist, and then use which- 
ever theory it prefers. I 

There are many different ways to implement 
stacked generalization. Its primary implementation 
is as a technique for combining generalizers, al- 
though it can also be used when one has only a single 
generalizer, as a technique to improve that single 
generalizer. 

For any real-world learning set O, there are always 
many possible generalizers {Gi} one can use to ex- 
trapolate from O. One is always implicitly presented 
with the problem of how to address this multiplicity 
of possible generalizers. Most algorithmic schemes 
for addressing this problem, including in particular 
nonparametric statistics techniques like cross- 
validation (Efron, 1979; Stone, 1977), generalized 
cross-validation (Li, 1985) and bootstrapping (Efron, 
1979), are winner-takes-all strategies. These schemes 
can be viewed as mappings which take an arbitrary 
generalizer and learning set as input, and give as 
output an estimate of the average generalizing ac- 

Strictly speaking, the amount of information in the learning 
set - the number of bits defining the set of parent functions 
consistent with that learning set (see Anshelevich, Amirikian, 
Lukashin, & Frank-Kamenetskii, 1989). The extra information 
implicit in stacked generalization comes from the assumption that 
in-sample/out-of-sample techniques are accurate indicators of 
generalization behavior for the entire learning set. This assump- 
tion is implicit in most nonparametric statistics techniques (e.g., 
the nonparametric statistics techniques discussed below). 

curacy of that generalizer, for the unknown parent 
function which generated the learning set. To use 
such a mapping one simply picks that G ~ {Gi} which, 
together with O, has the highest estimated general- 
ization accuracy according to the mapping, and then 
uses that G to generalize from O. 

In contrast, stacked generalization provides a 
strategy for this situation which is more sophisticated 
than winner-takes-all. Loosely speaking, this strat- 
egy is to combine the {Gj} rather than choose one 
amongst them. This can be done (for example) by 
taking their output guesses as input components  of 
points in a new space, and then generalizing in that 
new space (see Figure 1). 

Later on in this paper winner-takes-all strategies 
will be shown to be a special case of using stacked 
generalization in this manner,  where one is doing the 
generalization in the "new space" by means of a 
global fit of a highly restricted hyperplane. Accord- 
ingly, stacked generalization can be viewed as a more 
flexible version of nonparametric statistics tech- 
niques like cross-validation. In particular, all the 
usual arguments supporting such techniques apply 
even more strongly to stacked generalization, and 
therefore it can be argued that for almost any gen- 
eralization or classification problem, since invariably 
there is more than one generalizer which can be ap- 
plied to the problem, to maximize the generalization 
accuracy one should use s tacked genera l iza t ion  
rather than any single generalizer by itself. 2 

In addition to viewing it as an extension of con- 
cepts like cross-validation, stacked generalization 
can also be viewed as a means of collectively using 
all of the {Gj} to estimate their own generalizing 
biases with respect to a particular learning set, and 
then filter out those biases. This description is par- 
ticularly apt in the variation of stacked generalization 
appropriate when one only has a single generalizer. 
In such a situation, stacked generalization is (overtly) 
a scheme for estimating the errors of a generalizer 
when working on a particular learning set, and then 
correcting those errors (see Figure 2). 

Section 2 of this paper presents a rigorous defi- 
nition of stacked generalization and discusses why it 
would be expected to improve generalization accu- 

: There are no guarantees, of course. Some noncross-valida- 
tion schemes for choosing amongst a set of generalizers (e.g., 
parsimony, or even random choice) will in certain circumstances 
result in choosing a generalizer which has a lower generalization 
error rate than the generalizer chosen by cross-validation. Simi- 
larly, in certain circumstances some scheme other than stacked 
generalization (e.g., just using one of {Gj} straight, by itself) will 
outperform stacked generalization. This nonuniversality is inev- 
itable, and holds for any generalizing scheme whatsoever, due to 
the fact that guessing a parent function based on only a finite 
number of samples of it is an ill-posed problem in the Hadamard 
sense (see Morozov, 1984). 
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FIGURE 1. An example of how to use stacked generalization 
to combine generalizers. Here we are combining two gen- 
eralizers, G1, and G2. The learning set, L, is represented fig- 
uratively by the full ellipse. A question q lying outside of L 
is also indicated. Finally, a partition of L into two portions is 
also indicated; one portion consists of the single input-out- 
put pair (x, y), and the other portion contains the rest of L. 
Given this partition, we train both G, and G2 on the portion 
{L - (x, y)}. Then we ask both generalizers the question x; 
their guesses are g, and g2. In general, since the generalizers 
have not been trained with the pair (x, y), both gl and g2 will 
differ from y. Therefore, we have just learned something; 
when G~ guesses g~ and G2 guesses G2, the correct answer 
is y. This information can be cast as input-output information 
In a new space (i.e., as a single point with the 2-dimensional 
input (g,  g2) and the output (y). Choosing other partitions 
of L gives us other such points. Taken together, these points 
constitute a new learning set, L'. We now train G, and G2 on 
all of L and ask them both'the question q. Then we take their 
pair of guesses, and feed that pair as a question to a third 
generalizer which has been trained on L'. This third gener- 
alizer's guess is our final guess for what output corresponds 
to q. Assuming there's a strong correlation between the 
guesses made by G~ and G2 on the one hand, and the correct 
guess on the other, This implementation of stacked gener- 
alization will work well. 

racy. Section 3 of this paper then presents two ex- 
perimental examples of using stacked generalization. 
The first is using it to improve the performance of a 
single generalizer (here an explicit surface-fitting al- 
gorithm). The second is using it to improve upon the 
individual performance of several generalizers for a 
modified version of the text-to-phoneme data set that 
went into making NETtalk (Carterette & Jones, 
1974; Sejnowski & Rosenberg, 1988; Stanfill & 
Waltz, 1986; Wolpert, 1990b). Section 4 then dis- 
cusses some of the myriad variations and extensions 

of stacked generalization, some of the ways it can be 
approached theoretically, and some heuristics con- 
cerning the scheme's behavior. 

It would be impossible to investigate in great 
depth all of the theoretical and empirical issues con- 
cerning stacked generalization in a single paper. This 
paper is instead intended to serve as a broad intro- 
duction to the idea of stacked generalization and its 
many variations. 

The full learning set, L 

l i 

Error of G's guess ~ / ~  

0 • = clcmcm of L' 

! ° .  
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FIGURE 2. An example of how to use stacked generalization 
to improve a single generalizer. The (single) generalizer Is 
G. As in Figure 1, a learning set L is reprsented figuratively 
by the full ellipse, a question q lying outside of L Is also 
indicated, and a partltion of L into two portions is also shown. 
Given this partition, we train G on the portion {L - (x, y)}. 
Then we ask G the questlon x, and note both its guess, g 
and the vector from x to its nearest neighbor in {L - (x, y)}, 
6. In general, since G has not been trained with the pair 
(x, y), g will differ from y. Therefore, we have just learned 
something; when the question Is x, and the vector from x to 
the nearest nelghbor In the learnlng set Is 6, the correct 
answer differs from G's guess by (g - y). This information 
can be cast as input-output informatlon In a new space (l.e., 
as a slngle point with the 2-dlmenslonal Input (x, 6) and the 
output (g - y). Chooslng other partitlons of L gives us other 
such polnts. Taken together, these polnts constitute a new 
learnlng set, L'. We now train G on all of L and ask It the 
question q. Then we take the palr of q and the vector from 
q to its nearest neighbor In L, and feed that pair as a question 
to a third generalizer which has been trained on L'. This third 
generalizer's guess is our guess for G's error in guessing 
what output corresponds to q. Adding this estimated error 
(or a fraction thereof) back to G's guess gives our final guess. 
Assuming there's a strong correlation between the question 
and its vector to the nearest element In the learning set on 
the one hand, and the generalizer's error on the other, this 
implementation of stacked generalization will work well. 
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2. HOW STACKED GENERALIZATION 
WORKS 

For full rigor, I will first provide a mathematical 
definition of a generalizer. Then I will define the 
process of stacked generalization, giving a rigorous 
definition of cross-validation along the way. Unfor- 
tunately, it is in the nature of stacked generalization 
that presenting it in full generality and full rigor 
makes it appear more complicated than it really is. 
At the end of this section, two examples are provided 
to mitigate this effect. The first example is of a way 
to use stacked generalization with multiple gener- 
alizers, and the second example is of a way to use it 
with a single generalizer. 

2.1. Generalizers 

A generalizer is a mapping taking {a learning set of 
m pairs {Xk E R", Yk ~ R}, 1 ~< k ~< m, together with 
a question E R"} into {a guess E R}. (Full generality 
would have the guess E RP, not R. However for 
most applications one can replace a generalizer mak- 
ing guesses in R ~ with the Cartesian product of p 
separate generalizers making guesses in R. Accord- 
ingly, in this paper p is taken to equal 1 (see Wolpert, 
1989). For a given n, such a mapping is equivalent 
to a countably infinite set of functions {g/}, 1 ~< i < 
~c one function for each possible value of m. gt takes 
three arguments (the learning set input xt, the learn- 
ing set output y~, and the question q); g2 takes five 
arguments (xt, Yl, x2, Y2, and q); and so on (see 
Wolpert, 1990c). Often the {g/} are only implicitly 
defined in the definition of the generalizer's algo- 
rithm. This is the case with back propagation, for 
example. (Strictly speaking, the {g/} of back propa- 
gation are not single valued, since they depend on 
the (random) initial choice of weights. This difficulty 
is of little consequence however, and can be avoided 
explicitly by averaging over a set of initial choices of 
the weights, for example.) In other generalizers 
(e.g., generalizers which work by explicitly fitting a 
surface), it is possible to write down the {g/} directly. 
Colloquially, one says that a generalizer's g,,,, when 
provided with the argument list {x~, y~, x2, Y2 . . . .  , 

x .... y,,,; q}, is being "taught" or "trained" with an 
m-element learning set consisting of the elements {x~, 
y~, x2, Y2 . . . . .  x,,, y,,,}, and is then "asked" the 
question q, for which it "guesses" what the corre- 
sponding output should be. If the generalizer returns 
the appropriate y/whenever q is equal to one of the 
x/in the learning set, then we say that the generalizer 
reproduces  the learning set. 

In the scenario considered by this paper, we are 
given a learning set O of m elements living in the 
space R "÷~. Together with O we are given a set of 
N generalizers {Gj}, where N 1> 1 (i.e., we are given 
a set of N separate sequences of functions {g/}). As 

an example, n could be 3, and the learning set might 
consist of m elements of the form (a, b, c, output = 
a + b + c), where a, b, and c are integers. "Correct"  
generalization would be to guess the parent function 
{output = sum of the three input components}. N 
could then be four, for example, with the four Gj 
being ID3, back propagation, global fitting with a 
polynomial (over the n variables) of minimal order, 
and a local surface-fitting technique. Since it is a 
classifier (see Introduction), we know that ID3 can- 
not generalize correctly for this parent function un- 
less it is attached to a detrending preproces- 
sor. Similar difficulties will affect back propagation 
(see Wolpert, 1989). Of course, none of this can be 
known with certainty to someone only provided 
with the learning set O and not with the entire parent 
function. 

In what follows I will often be a bit free with the 
symbols, and write G(O;  q), for example, when what 
I really mean is the output of the generalizer G's 
m-th function, g,, (where m is the number of elements 
in the provided learning set O), taking as argument 
list the enumerated elements of O followed by the 
question q. Similarly, even though it itself is made 
up of components (being an n-dimensional vector), 
I will often refer to the input space projection of a 
point in the full input/output space R "÷t as the "in- 
put component" of that point. Moreover, I will often 
refer to the "nearest neighbor" of a point in a space. 
What I really mean is the nearest neighbor of that 
point as measured in the input space projection of 
the full space. For these and all other cases, the 
context should always make the meaning clear. 

2.2. Partition Sets and Cross-Validation 

The first step in employing stacked generalization is 
choosing a set of r partitions, each of which splits O 
into two (usually disjoint) sets. Label such a set of 
partitions as O/j, where 1 ~< i ~< r, and j E {1, 2}. 
Such a set of partitions is called a part i t ion set. For 
example, for a cross-validation partition set (CVPS), 
r = m, for all i 0/2 consists of a single element of 
O, the corresponding O/~ consists of the rest of O, 
and Oi2 ~ Oi2 for i :# j. (Since r = m ,  this last 
requirement of distinctness of the 0/2 means that the 
set of all 0/2 covers O.) One pair of such a CVPS is 
illustrated in both Figs. 1 and 2. One can define a 
bootstrap partition set in a similar way to a CVPS, 
except that (roughly speaking) the elements 0/2 are 
chosen randomly rather than in such a way as to 
exhaustively cover O with no duplications. As an- 
other example, for a GMDH partition set (Xiang- 
dong& Zhaoxuan, 1990) r is some divisor of m, O/~ 
consists of m / r  elements, Oil N Oil = {~ for i ~ j, 
and as with the CVPS 0/2 = O - O,  ~' i. (Here it 
is the Oil which form a disjoint cover for O rather 
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than the O~2.) Partition sets of this type where r < 
m are particularly useful if it takes as long time to 
train some of the {Gi}. 

The winner-takes-all technique of cross-valida- 
tion is a very straight-forward way to use a CVPS 
to map a generalizer G together with a learning 
set O to an estimate of the generalization error rate 
of G when generalizing from O. Intuitively, it esti- 
mates the generalization accuracy by seeing how well 
the generalizer can guess one part of the full learning 
set when taught with the rest of it. More rigorously, 
it works with the CVPS by calculating the average, 
over all i, of the error of G at guessing what output 
corresponds to the input component of Oi2 when 
taught only with the remainder of O, O,:  the cross- 
validation error estimate of G with respect to O is 
defined by 

C.V.(G, O) -= E,[G(O,; the input component of O,2) 
- (the output component of O,:)]2/m 

The technique of minimal cross-validation error says 
that given a set of candidate generalizers {Gj} and a 
learning set O, one should generalize from O with 
that generalizer Gk E {(3/.} such that C. V. (Gk, O) < 
C.V.(G i, O) V j # k. 

For simplicity, in the rest of this paper, we will 
only consider the CVPS, so any set O~2 consists of 
only one element. 

2.3. Stacked Generalization 

Define the R "÷ ' space inhabited by the original learn- 
ing set O as the "level 0 space." Any generalizer 
when generalizing directly off of O in the level 0 space 
is called a "level 0" generalizer, and the original 
learning set O is called a "level 0" learning set. For 
each of the r partitions of O, {Oil, Oa}, look at a set 
of k numbers determined by (a subset of) the N {Gj} 
working together with that partition. Typically these 
k numbers can be things like the guesses made by 
the {Gj} when taught with Oi~ and presented as a 
question the input component of the element O~2 
(i.e., Gj(Oit; the input component of O~2)), the input 
component of the element O~2, or the vector in the 
input space connecting that input component of O~2 
to its nearest neighbor in O, .  Take each such set of 
k numbers and view it as the input component of a 
point in a space R TM. The corresponding output 
value of each such point is calculated from the output 
component of the corresponding Oi2, perhaps along 
with Gj(Oi,; the input component of O~2) for one of 
the {Gj}. This space R k* ~is called the "level 1 space." 
Since we have r partitions of O, we have r points in 
the level 1 space. Those r points are known as the 
"reduced" or the "level 1" learning set. (In Figs. 1 
and 2, the level 1 learning set is L ' . )  

We wish to generalize from O by operating a gen- 

eralizer in the level 1 space. We can do this in many 
ways. The common idea is to take a question in the 
level 0 space, pass it through the transformations 
which produced the input components of the level 1 
learning set to get a level 1 question in the level 1 
input space, and then answer that level 1 question 
by generalizing from the level 1 learning set. This 
level 1 guess is then transformed back into a level 0 
guess. (Said transformation being determined by 
how the output components of the O~2 are used to 
calculate the output components of the level 1 learn- 
ing set.) Any generalizing process of this form is 
known as "stacked generalization." The process as 
a whole can be iterated, resulting in levels p > 1 
(i.e., multiple stackings). For now, we'll just be con- 
cerned with 2 levels stacked generalization, as de- 
scribed above. 

It is important to note that many aspects of 
stacked generalization are, at present, "black art." 
For example, there are currently no hard and fast 
rules saying what level 0 generalizers one should use, 
what level 1 generalizer one should use, what k num- 
bers to use to form the level 1 input space, etc. In 
practice, one must usually be content to rely on prior 
knowledge to make (hopefully) intelligent guesses 
for how to set these details. Of course, the same use 
of "black art" occurs in the rest of machine learning 
as well. For example, in practice most researchers 
currently rely on prior knowledge of the problem 
domain to make a (hopefully) intelligent guess as to 
what generalizer to use and how to configure it. 

2.4. An Example of Stacked Generalization for 
the Case of Multiple Generalizers 

As an example of stacked generalization, assume we 
have an m-element learning set O of points living in 
R "÷~, a set of N generalizers {Gi}, and a question 
q E R". As was mentioned before, we are restricting 
ourselves to the CVPS. This partition set gives us m 
sets {Oil, Oi2}, where each Oil is a different subset 
o f m  - 1 o f  the elements of O, and O~2is the re- 
maining element of O. Let k = N, and have the 
k = N numbers used to construct the input com- 
ponents of an element of the level 1 learning set be 
the guesses made by all N of the {Gj} when taught 
with a particular O~ and presented with the input 
component of the corresponding O~, as a question. 
(In other words, a particular point in the level 1 
learning set has the N components of its input pro- 
jection set to the N numbers Gj(O~t); the input com- 
ponent of Oi2) (see Figs. 1, 3, and 4). Let the output 
component of a point in the level 1 learning set be 
given directly by the output component of the cor- 
responding Om Since there are r = m partitions of 
O, there are r = m elements in the level 1 learning 
set, just like in the level 0 learning set. Since k = 
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OUTPUT 
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FIGURE 3a. A schematic depiction of a level 0 learning set 
and a level 0 question. Here the learning set consists of five 
points, indicated by solid circles. The question is indicated 
by a question mark (more precisely, the question is the input 
projection of the question mark, indicated by the Intersection 
of the associated dotted line and the input axis.). For this 
example, the input space is one-dimensional. 

N, each point in this level 1 learning set has an N- 
dimensional input component. To make a guess for 
the level 0 question, q, we convert it into a level 1 
question. We do this in the same way we made the 
level 1 learning set: we find the guess made in re- 
sponse to the question q by all N of the {Gj} when 
taught with (now the full) learning set O. These N 
guesses give us the input coordinates of a question 
in the level 1 space, and to answer that question we 
simply run some generalizer off of the level 1 learning 
set and ask it that level 1 question. This guess for 
what level 1 output should correspond to the level 1 
question is then taken as the guess made by the entire 
stacked generalization process for what level 0 output 
should correspond to the original level 0 question. 

This procedure sounds complicated. It really 
is not. As an example, take the parent function "out- 
put -- sum of the three input components" men- 
tioned in section 1.1. Our learning set O might consist 
of the five input-output pairs (0, 0, 0; 0), (1, 0, 0; 
1), (1, 2, 0; 3), (1, 1, 1; 3), (1, - 2 ,  4; 3), all sampled 
with no noise from the parent function. Label these 

OUTPUT 

I-1 

FIGURE 3b. A schematic depiction of one of the pairs of the 
CVPS of the level 0 learning set of Figure 3a. 6,, consists of 
the four solid circles, and 0o is the fifth element of the level 
0 learning set, now depicted by an open square rather than 
a solid circle. The other four pairs making up the CVPS sim- 
ply change which element of the level 0 learning set is the 
square. 

OUTPUT 

O 

INPUT 2 

INPUT I 

FIGURE 3c. A schematic depiction of one of the elements 
of a level 1 learning set. Here we determine the (two) level 1 
inputs by running two level 0 generalizers on a level 0 {learn- 
ing set, question} pair. For the CVFS indicated in Figure 3b, 
both of these generalizers are taught with the solid circles, 
and are then asked to guess what level 0 output should 
correspond to the input value of the square. These two 
guesses form the two input components of the solid circle 
in this figure, indicated by the two dotted lines. The output 
of this level 1 space is the same as the output of the level 0 
space (i.e., the output value of the single circle indicated in 
this figure Is identical to the output value of the square in 
Figure 3b). 

five input-output pairs as O,2 through Os2, with 
O,, - O - Oi2 (so for example O21 consists of the 
four pairs {(0, 0, 0, 0), (1, 2, 0; 3), (1, 1 1; 3), (1, 
- 2 ,  4; 3)}. We have two level 0 generalizers, Gt and 
G2, and a single level 1 generalizer, F. The level 1 
learning set L' is given by the five input-output pairs 
(G,(O~,; input components of O~2), G2(O~,; input 
components of On); output component of 0/2) given 

OUTPUT 

e 

l ? • { 

iNPUT l 

FIGURE 3d. The level 1 learning set, made from the pairs of 
the level 0 CVPS, are indicated by the solid circles in this 
figure. (For clarity, only three of the five points of the level 
1 learning set are shown.) Once this learning set Is con- 
structed, both level 0 generalizers are then taught with the 
full level 0 learning set and asked what level 0 output they 
think should correspond to the level 0 question. These two 
guesses determine the level 1 question, Indicated here by 
(the input projection of) a question mark. A generalizer is 
now trained with the level 1 learning set and then makes a 
guess for this level I question. This guess serves as the full 
system's guess for what level 0 output should correspond 
to the level 0 question, given the level 0 learning set. 
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I) CREATING L' 

Level I/ 
Learning set U, Contains r ele- 
ments, o n e  for each partition in 
the level 0 pal~ilion set. 

Level 0/ 
Learning set 8. Partition set  

8ij. Generalizers IGp}. Gl(8i1; in(Oi2)) G2(0il; in(0i2)) ... ; out(0i2) 

2) GUESSING Final euess 

T 
G'(L'; q') I/ Learning set L', Generalizer 

G'. Question q'. 

Level 01 ~ ~ "  
Learning set 8. Genernlizers 

[Gpl. t,/uesdonq.- Gl(O;q ) G2(O;q ) ... ; 

FIGURE 4. A styl ized depiction of the two stages Involved in the implementation of stacked generalization described in Section 
2.4. In the first stage the level 1 learning set L' is created from the level 0 parti t ion set 81j and the set of level 0 generalizers 
{Gp}. In the second stage the exact same architecture used to create L' is used to create a level 1 question from a level 0 
question. After this the final guess is found by training the level 1 generalizer on L' and then asking it the new-found level 1 
question. Note that this entire procedure is twice parallelizable; once over the partiUons, and once over the level 0 generallzers. 

by the five possible values of i. (This level 1 space 
has two dimensions of input and one of output.) So 
for example the member of the level 1 learning set 
corresponding to i = 1 has output component 0 and 
input component Gl(O~l; (0, 0, 0)), G2(Ou; (0, 0, 
0)). Now we are given a level 0 question (xl, x2, x3). 
We answer it with the guess F(L ' ;  (G~(O; (x~, x2, 
x3)), G2(O; i(x~, x2, x3)))) (i.e., we answer it by train- 
ing F on L' and then asking it the question given by 
the guesses of the two level 0 generalizers which were 
themselves trained on all of O and asked the ques- 
tion q). 

The guess made by this implementation of stacked 
generalization is determined by combining the 
guesses of the original N {G/}. Ho w  they are com- 
bined depends on the level 1 generalizer used. For 
example, consider the following level 1 generalizer: 
"Fit the (level 1) learning set with a single global 
hyperplane of the form {output = value of input 
dimension t}. There are k such global hyperplane fits 
for the k possible values of t; choose the hyperplane 
fit with the smallest RMS Euclidean error for fitting 
the level 1 learning set." In the language of pattern 
recognition, this generalizer is the rule "find which 
single feature (i.e., which input space component) 
has the greatest correlation with the correct answer, 
and guess according to it." This level 1 generalizer 
results in a winner-takes-all strategy for using the 

{Gj}. It makes the determination of which of the {Gj} 
to use by finding the G/ with the minimal RMS 
error for predicting part of the level 0 learning set 
from the rest. This error is calculated using the cross- 
validation partition set. In fact, a moment's thought 
shows that stacked generalization with this simple- 
minded level 1 generalizer is the exact same gener- 
alizing process as the technique of minimal cross- 
validation! As was mentioned in the introduction, 
cross-validation is seen to be just a (relatively un- 
interesting) special case of stacked generalization, 
corresponding to an extraordinarily dumb level 1 
generalizer. 3 

3 In addition to stacked generalization, there are other ways 
of embedding the central idea of cross-validation in a more so- 
phisticated framework. One such is to not use the cross-validation 
error simply as a means for choosing amongst a set of generalizers. 
Rather one constructs a generalizer from scratch, requiring it to 
have zero cross-validation error. (To make the construction 
unique, one must impose other constraints as well--see (Wolpert, 
1990d).) Instead of coming up with a set of generalizers and then 
observing their behavior, one takes the more enlightened ap- 
proach of specifying the desired behavior first, and then solving 
the inverse problem of calculating the generalizer with that desired 
behavior. This approach is called "self-guessing." It is similar in 
spirit to regularization theory, except that here (loosely speaking) 
the regularization is being done over the space of generalizers as 
opposed to the space of input-output functions. 
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As another naive example, the level 1 generalizer 
could be independent of the level 1 learning set: 
"make a guess for a (level 1) question by averaging 
all the k components of that question." Another 
extraordinarily dumb level 1 generalizer. Yet the 
guesses it makes are the same as those made by 
perhaps the most common currently used scheme 
(second to winner-takes-all schemes) for combining 
generalizers; stacked generalization with this level 1 
generalizer is exactly equivalent to simply averaging 
the guesses made by all N of the {Gj}. A (marginally) 
more sophisticated way of combining generalizers is 
to form a weighted average of the guesses of the 
{Gj}. This is equivalent to having the level 1 gener- 
alizer be a scheme to fit the level 1 learning set with 
a single global hyperplane. 

We can view the various commonly used schemes 
for combining generalizers as simply special cases of 
stacked generalization. In all these schemes, one is 
implicitly confronted with a level 1 learning set and 
must decide how to generalize from it. Yet the prob- 
lem of how to generalize from the level 1 learning 
set is just a normal generalization problem, in prin- 
ciple no different from any other. Therefore, just as 
with any other generalization problem, it makes no 
sense to use "dumb" generalizers to generalize from 
the level 1 learning set. Yet one very noticeable fea- 
ture of these commonly used schemes for combining 
(level 0) generalizers is precisely the lack of sophis- 
tication of their level 1 generalizers. Therefore, just 
as with any other generalization problem, one would 
expect improved performance--perhaps extremely 
improved performance--if these dumb level 1 gen- 
eralizers were replaced with more sophisticated 
generalizers. 

2.5. An Example of Stacked Generalization for 
the Case of One Generalizer 

There is no a priori reason why the k numbers used 
to make the level 1 input space have to all be the 
guesses of a set of generalizers. Nor is there any a 
priori reason why the output components of the level 
1 learning set have to be given directly by the output 
components of the 0,-2. This can be illustrated with 
an example of how to use stacked generalization 
when the set {G~} consists of a single element (i.e., 
by an example of how to use stacked generalization 
to improve the behavior of a single generalizer, as 
opposed to using it as a means of combining a set of 
generalizers). This example is illustrated in Figure 2. 
(Another similar example is illustrated in Figure 5). 

Again use the CVPS, so r = m. The level 0 input 
space has dimension n; let k = 2n. The 2n numbers 
defining the level 1 input space are the n coordinates 
of a level 0 question (like the input components of 
O~2) together with the n input coordinates of the 

vector connecting the nearest neighbor of that ques- 
tion amongst the level 0 learning set (like the nearest 
neighbor amongst the Oi,) to the question itself. Our 
single generalizer G does not in any way contribute 
to the level 1 input space values. Rather G comes 
in, indirectly, in the level 1 space outputs; the output 
component of a point in the level 1 space is the error 
(or estimate thereof, as the case might be) of G when 
trying to guess what output corresponds to the as- 
sociated level 0 question. For example, in forming 
the level 1 learning set we set the output value cor- 
responding to a particular partition {Oil, O~2} to be 
{G(Oi~; input component of Oi2) - (the output com- 
ponent of Oi2)}. To make a guess as to what output 
should correspond to the question q, after we have 
constructed the level 1 learning set we train G with 
all of O, ask it q, and store the resultant guess; call 
it y. Now we feed q, together with the level 0 input 
space vector connecting q to its nearest neighbor 
amongst O, into the level 1 space as level 1 input 
coordinates. Generalizing in this level 1 space, we 
get a guess for what level 1 output should correspond 
to this level 1 question (i.e., we get an estimate for 
the difference between y and the correct guess). Now 
subtract half of this error estimate from y to get the 

Output 

R 

q0 Input 

= Parent function 

= Element of level 0 learning set 

Level 0 generalizer's guessing curve (The level 0 

generalizer is a connect.the-dots surface fitter.) 

q0 = Level 0 question 

FIGURE 5a. Figures 5(a) through 5(c) are a geometric de- 
piction of how stacked generalization attempts to improve 
the guessing of a single generalizer. The figures assume the 
same stacked generalization architecture as in Figure 2, ex- 
cept that the level 1 Inputs are one-dimensional, consisting 
solely of the level 0 input. Figure 5(a) illustrates a parent 
function and (part of) a learning set made up of some (noise- 
free) samples of that parent function. (Other elements of the 
learning set exist outside the range of this figure.) The level 
0 generalizer is a simple connect-the-dots generalizer; its 
guessing for the learning set is explicitly depicted. A partic- 
ular question is indicated by qo. Our task is to estimate and 
then correct for the error of the level 0 generalizer in guessing 
what output should correspond to q0. This is achieved with 
a second, level 1 generalizer. 



Stacked Generalization 249 

Output / / 
~ ~  GUESSING ERROR 

ql Input 

parent function 

left.ln element of level 0 learning set 

len-out element of level O learning set 

ql = input component of left-out point; a 
level I question. GUESSING ERROR forms 
the corresponding level i output. 

level 0 generalizer's guessing curve 

FIGURE 5b. (See Figure 5(a)). To perform the stacked gen- 
eralization, we need to first form the level 1 learning set. This 
is done via a CVPS of the original level 0 learning set. One 
partition pair from this CVPS is illustrated in this figure. The 
point in the learning set corresponding to the hatched circle 
is e~; the level 0 generalizer is trained on all other points of 
the level 0 learning set, and then its error at guessing what 
output corresponds to the input component of 0~ (i.e., cor- 
responds to qt) is tabulated. This error is the output of a 
point in the level 1 learning set; the corresponding level 1 
input is the same as the level 0 input, qt. 

GUESSING ERROR (Level I output) 

/ %  = 

Level 1 input 
(equals level 0 input) 

level I question; here identical to 
the level 0 question, qo (see figure 5(a)). 

element of level I learning set 

FIGURE 5c. (See Figs. 5(a) and 5(b)). This figure depicts 
some elements of the level 1 learning set, which was made 
according to the algorithm described In Figure 5(b). The full 
stacked generalization scheme works by first using a gen- 
eralizer to guess what level 1 output should correspond to 
the level 1 question (which is identical to the level 0 ques- 
tion), given the Input-output pairs of the level 1 learning set. 
After this guess is found, one finds the level 0 generalizer's 
guess for what output corresponds to the level 0 question, 
and subtracts from this level 0 guess the level 1 guess mul- 
tiplied by .5 (just to be conservative). This gives our final 
guess for what output corresponds to the level 0 Input. In 
this particular example, since the errors of the level 0 gen- 
eralizer are so strongly correlated with the level 0 question, 
for any reasonable level 1 generalizer the error of the full 
stacked generalization scheme will be significantly lower 
than the error of the level 0 generalizer used straight. 

number which is our final guess as to what output 
should correspond to the original question q. 

In this procedure we multiply by the constant one 
half just to be conservative. Note that this multipli- 
cative constant gives us a knob determining how 
much we are using stacked generalization. When the 
constant equals 0, our guessing is equivalent to using 
the level 0 generalizer straight. As the value of this 
constant is increased, our guessing becomes more 
and more stacked-generalization-based. 

Intuitively, this implementation of stacked gen- 
eralization with a single generalizer is a means of 
estimating the actual error (not just the average value 
of the errors) of the provided generalizer when pre- 
sented with a particular question and a particular 
learning set. It works by first seeing how the gen- 
eralizer errs when taught with only part of the learn- 
ing set and asked a question in the remainder of the 
learning set; this information then serves as the level 
1 learning set, and the level 1 generalizer generalizes 
from this information to make an estimate for the 
error when the original level 0 generalizer is taught 
with the entire level 0 learning set. This error esti- 
mate (or more usually a fraction of it) is then sub- 
tracted from the level 0 generalizer's guess to arrive 
at an improved guess. 

The information we send into the level 1 input 
space determines how our error estimates are al- 
lowed to vary. In the example given above, in ad- 
dition to depending strongly on the level 0 question, 
we are assuming that the errors of the level 0 gen- 
eralizer are strongly dependent on the nearest neigh- 
bor of that question amongst the elements of the 
learning set. The rationale is that varying the nearest 
neighbor of the question often has a pronounced 
affect on the generalization accuracy of the level 0 
generalizer, especially if that level 0 generalizer is 
something like a local surface-fitter. 

It's interesting to note that a special case of single 
generalizer stacked generalization is exactly equiv- 
alent to running the level 1 generalizer by itself. Have 
the level 1 input values be simply the level 0 question 
(or input component of 0i_,, as the case might be). 
Furthermore, have the level 1 outputs be the level 0 
outputs (i.e., have the transformation taking the out- 
put component of the Oi2 to the output components 
of the level 1 space be the identity mapping). Note 
that no level 0 generalizer is being used. In fact, this 
entire stacked generalizer structure is exactly equiv- 
alent to running the level 1 generalizer by itself 
directly on the level 0 learning set and level 0 ques- 
tion. Therefore, just as stacked generalization corre- 
sponds to an extension of cross-validation when one 
has multiple generalizers, so when one has only a 
single generalizer stacked generalization corresponds 
to an extension of using that generalizer directly by 
itself. 
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3. EXPERIMENTAL TESTS OF 
STACKED GENERALIZATION 

This section reports the results of two numerical ex- 
periments which indicate that stacked generalization 
does indeed improve generalization accuracy. These 
experiments are relatively controlled, " toy"  prob- 
lems. The idea is to use them as pedagogical and 
heuristic tools, much like the toy problems used in 
( R u m e l h a r t  & McCie l land ,  1986). It  should  be 
noted, however,  that there appears  to be little (if 
any) degradation of performance of stacked gener- 
alization when it is instead applied to messy, real- 
world problems. For example,  Gustafson,  Little, and 
Simon (1990) have reported that (what amounts to) 
stacked generalization beats back-propagation for 
some hydrodynamics problems. 4 Similarly, a number  
of researchers have reported on the efficacy of simply 
averaging a set of  generalizers, for example for as- 
pects of the problem of predicting protein structure 
(Schulz et al., 1974). Xiandong has reported on the 
efficacy of (what amounts  to) using stacked gener- 
alization with a variant of a G M D H  partition set 
together and a radial basis function generalizer for 
t ime-series  predic t ion (Xiangdong & Zhaoxuan ,  
1990). 5 Finally, work in progress with Alan Lapedes 
and Rob Farber  suggests that using stacked gener- 
alization to combine ID3, perceptrons,  and the au- 

4 Although Gustafson et al. (1990) do not view it in those 
terms, their scheme is essentially the same as cross-validation, 
except that instead of finding a single best generalizer, they are 
finding the best (restricted) linear combination of generalizers. 
using a CVPS to determine that combination. In the language of 
stacked generalization, their scheme is using a CVPS along with 
a level 1 input space consisting of the outputs of the level 0 gen- 
eralizers. The level 1 output space is the correct outputs from the 
level 0 space, and the level 1 generalizer is a restricted global 
hyperplane fitter. (The level 0 generalizers in their scheme are 
variations of local hyperplane fitters.) The difference between this 
scheme and straight cross-validation is that the restrictions Gus- 
tafson et al. (1990) imposes on the level 1 generalizer are more 
lax. They too generalize in the level 1 space by fitting with a global 
hyperplane, but they allows arbitrary hyperplanes of the form 
E a,x,, where the x, are the level 1 input space coordinates and 
the a, are arbitrary real-valued constants restricted so that 53 a, = 
1. (In contrast, cross-validation adds the extra restriction that all 
but one of the a, must equal 0,) 

s As implemented by e Xiangdong, GMDH can be viewed as 
using the following partition set rather than the so-called "GMDH 
partition set": 0,~ ranges over all single pairs from 0, just as in a 
CVPS, but 0,~ = 0 for all i. There are then p level 0 generalizers, 
all of which are identical except that they use nonoverlapping 
subsets of 0 to train themselves. (p is usually restricted to be a 
divisor of m.) For example, the first level 0 generalizer might be 
a surface-fitter which only fits an i/o surface to the group of the 
first rn/p elements of 0, the second level 0 generalizer is the same 
surface fitter but fits an i/o surface to the second group of m/p 
elements of 0, and so on. The GMDH scheme of Xiangdong 
consists of feeding those p level 0 generalizers into a level 1 space 
and generalizing there. 

thor 's  metric-based H E R B I E  (Wolpert,  1990b) for 
the problem of predicting splice junctions in D N A  
sequences gives accuracy better  than any of the tech- 
niques by itself (i.e., preliminary evidence indi- 
cates that this implementat ion of stacked generaliza- 
tion is the best known generalization method for this 
problem).  

3.1. Experiment One 

The simpler of the two numerical experiments  in- 
volved using stacked generalization to improve the 
performance of a single generalizer. The level 0 input 
space for this experiment  was one-dimensional .  The 
problem was explicitly one of surface-fitting; the par- 
ent funct ions were  s imple h igh-school -math- type  
functions, and the level 0 generalizer was "linearly 
connect the dots of the learning set to make an input- 
output surface which then serves as a guess for the 
parent function" (i.e., the local linear technique of 
Farmer  and Sidorowich (1988). (See Figure 5 for an 
illustration of this level 0 generalizer).  

In this experiment  the stacked generalization ar- 
chitecture was exactly the same as in the example at 
the end of Section 2 on how to augment  the per- 
formance of a single generalizer (see Figure 2). n 
equals 1 for this problem,  so the level 1 input space 
was 2-dimensional. The level 1 generalizer was 
the metric-based H E R B I E  described in (Wolpert,  
1990b; Wolpert ,  1990c). It works by returning a nor- 
malized weighted sum of the outputs of the p nearest 
neighbors of the question amongst  the learning set. 
Here  p was 3, and the weighting factor for each of 
the 3 nearest neighbors was the reciprocal of the 
distance between that neighbor and the question. 
"Normal iza t ion"  means that the weighted sum 
was divided by the sum of the weighting factors: 

Z ~ guess = { ~ yi /d(q,  xi)}/{Z3:~ 1/d(q ,  xi)}, where q 
is the question, xt, x2, and x3 are the input compo- 
nents of the three nearest  neighbors of q in the learn- 
ing set, y~, Y2, and Y3 are the corresponding outputs,  
and d(. ,  .) is a metric, here taken to be the Euclidean 
metric. (When the input space is symbolic, it is con- 
ventional to use a Hamming  metric rather than a 
Euclidean metric (see Wolpert ,  1990b). This metric- 
based H E R B I E  is one of the simplest generalizers 
there are. 6 In addition, along with (for example)  
Farmer ' s  local linear technique, metric-based H E R -  
BIEs necessarily always reproduce their learning set, 
exactly (see Wolpert ,  1990b and Wolpert ,  1990c). 
The parameters  of this use of stacked generalization 
(e.g., .5, 3) were chosen in an ad hoc manner ;  pre- 
sumably cross-validation could be used to get bet ter  
values. 

In the first phase of the exper iment  stacked gen- 
eralization was run 1,000 times. Each time a new 3rd 
order polynomial was created,  all four of whose coef- 
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ficients were chosen randomly from the interval 
[ - 2 . 0 ,  2.0]. (Here  and elsewhere " r a n d o m "  means 
i.i.d, with a fiat sampling distribution.) For each such 
polynomial parent  function a 100-point learning set 
was chosen randomly,  and then a separate 100-point 
testing set of input space values was chosen ran- 
domly. Both sets had their input space values re- 
stricted to the interval [ - 1 0 . 0 ,  10.0]. The learning 
set was then used to " t ra in"  the stacked generali- 
zation structure described above,  and the errors 
when using that structure to guess the outputs of the 
elements of the testing set were recorded and com- 
pared to the errors of the level 0 generalizer run by 
itself with no level-1 post-processing, The average of 
the difference {(square of the error  for the level 0 
generalizer run by itself) - (square of the error for 
the stacked generalizer)} equalled 81.49. The esti- 
mated error in this average was --- 10.34 (i.e., stacked 
generalization improved the generalization with a 
confidence of 8 standard deviations). 

The magnitudes of the guessing errors, both for 
the level 0 generalizer run straight and for the stacked 
generalization structure, ranged over  many orders of 
magnitude,  so the number  "81.49" is not particularly 
meaningful. Ratios of error  magnitudes can be mis- 
leading, but they do have the advantage that (unlike 
simple differences of error magnitudes) they are not 
badly skewed by such logarithmically broad distri- 
butions. The average of the ratio {(square of the error 
for the level 0 generalizer run by itself)/(square of 
the error for the stacked generalizer)} equalled 1.929. 

More sophisticated versions of metric-based HERBIEs re- 
place a prefixed metric with something less restrictive. For ex- 
ample, in the use of metric-based HERBIEs reported in (Wolpert, 
1990b), the input space was 7 dimensional, and each of the 7 
coordinates of any input value were scaled by a distinct weighting 
factor, p,, 1 <- i <- 7, before-the conventional metric was applied. 
The weighting vector p, was determined by the learning set itself 
via cross-validation. A more general scheme would be to use a 
weighting matrix rather than a weighting vector. In this scheme, 
one multiplies all input space vectors by the weighting matrix 
before applying the conventional metric. (Use of a weighting vec- 
tor is a special case of this scheme where the weighting matrix is 
diagonal.) Again, in practice something like cross-validation could 
be used to find the matrix. (Since the space of possible matrices 
is so large howver, rather than the trial and error approach used 
in (Wolpert, 1990b) one would probably want to employ some- 
thing like gradient descent in the space of cross-validation error 
to find the "'optimal" weighting matrix.) Premultiplying by a 
weighting matrix is equivalent to linearly transforming the input 
space before doing the generalizing. Such a transformation allows 
cross-talk amongst the various input space coordinates to occur 
in the determination of distances bewteen input space vectors. 
This jump from use of a weighting vector to use of a weighting 
matrix in a metric-based HERBIE is loosely equivalent to the 
jump from using a perceptron (with its vector of synaptic weights) 
to using a feedforward neural net with hidden layers (where one 
has matrices of synaptic weights). After all, the mapping from the 
input layer to the hidden layer in a neural net is nothing more 
than a linear transformation of the original input vectors. 

The estimated error  in this average was +.0243; us- 
ing stacked generalization improved the generaliza- 
tion by a factor of 2, on average. 

The same problem was first investigated for parent 
functions which were polynomials only of order  2. 
The level 1 input space consisted of the two numbers 
a a n d f l ,  where a = (q - x0 ,  fl = (q - x 2 ) , q i s  
the question, and x~ and x2 are the two elements of 
the learning set used to make the local linear guess 
(i.e., they are the nearest neighbor of q, and the next 
nearest neighbor which lives on the opposite side of 
q from that first nearest neighbor.)  For this scenario 
the average of the ratio of the error  magnitudes 
ranged up to 50 (!), depending on the precise pa- 
rameters used. 

It is not hard to understand this behavior. For 
polynomials of order two it turns out that the error 
of the local linear technique is independent of the 
question. In fact, up to an overall proportionality 
constant, it's given exactly by ct[3. For this scenario, 
the level 1 generalizer only has to learn the simple 
surface {output -- a constant times the product of 
the 2 input coordinates} (i.e., a paraboioid,  a two- 
dimensional version of the original parent  surface). 
Let the cardinality of the level 0 learning set be m, 
and let the range of the input values in that learning 
set be z. The density in the input space of the ele- 
ments of the level 0 learning set is - m / z .  This means 
that the values of a and fl are - z / m .  Since there are 
m such values in the level 1 learning set, the density 
in the input space of the elements of the level 1 
learning set - m / ( z / m )  2 = ( m 3 ) / ( z  2) ~ ( m 2 ) / z  (under 
the assumption m ~ z). Since these level 1 points lie 
on the two-dimensional version of the level 0 parent 
surface, the stacking of the generalizer has effectively 
allowed us to run the original generalizer over  a 
learning set chosen from the original surface, but 
with a density m times that of the original level 0 
learning set. We have a "multiplier  effect ."  

As another  way of understanding the exceptional 
behavior for order two polynomial parent  surfaces, 
let the average output space magnitude of the points 
in the level 0 learning set be s, and let rs  be the 
average error  of the level 0 generalizer run straight. 
r measures the efficacy of the generalizer, and will 
in general be below 1, fairly close to 0. The average 
output space magnitude of the points in the level 1 
learning set is rs.  Since these points lie on the " s ame"  
surface as the points of the level 0 learning set, if the 
same generalizer is used we would expect an average 
error of the guesses in the level 1 space to be - r x 
(rs)  = r2s < <  rs.  Just as in the argument  of the 
preceding paragraph,  this output space argument 
says that for polynomials of order two, using a level 
1 generalizer with inputs a and fl results in a "mul-  
tiplier effect" diminishing the average guessing error 
polynomially. 
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In addition to polynomials, simple transcendental 
parent functions were also investigated. The level 1 
input space was again two-dimensional, the input 
coordinates were again q and q - xl, and the error 
estimate made by the level 1 generalizer was again 
multiplied by .5. Random constants were again cho- 
sen from [-2 .0 ,  2.0], the level 0 inputs were again 
chosen from [ -  10.0, 10.0], and again 1,000 runs of 
random 100-point learning sets and random 100- 
point testing sets were investigated. The same level 
0 and level 1 generalizers were used as in the poly- 
nomial tests. The parent functions were a sum of two 
sine waves and two exponential functions. The am- 
plitudes of all four functions were determined by the 
random constants, as were the phases of the two sine 
waves (thereby introducing cosines) and the fre- 
quencies of the two exponentials. The frequencies 
of the two sine waves were .1 and .2, and the sine 
function used interpreted its arguments as being 
in radians. 

The average of the difference {(square of the error 
for the level 0 generalizer run by itself) - (square of 
the error for the stacked generalizer)} equalled .0078. 
The estimated error in this average was + / -  .0011 
(i.e., stacked generalization again improved the gen- 
eralization with a confidence of 8 standard devia- 
tions). The average of the ratio {(square of the error 
for the level 0 generalizer run by itself)/(square of 
the error for stacked generalizer)} equalled 2.022. 
The error in this average was ---.0318, using stacked 
generalization again improved the generalization by 
a factor of 2, on average. 

These results are not intended to constitute the 
definitive investigation of how to use stacked gen- 
eralization to improve the accuracy of the local linear 
generalizing technique. Many variations of the 
schemes outlined here could be investigated (involv- 
ing, for example, different level 1 generalizers, dif- 
ferent values of parameters, different mappings from 
partitions to a level 1 space, different dimensional- 
ities of the level 1 input space, etc.) Rather these 
results are simply intended to indicate that stacked 
generalization does indeed improve the generaliza- 
tion of the local linear technique, at least for the 
smooth and nonvolatile parent functions investigated 
here. 

Nonetheless, it is worth commenting on how one 
might choose amongst the variations of this scheme 
in an algorithmic manner. One obvious way to 
do this would be to use cross-validation. If the 
cross-validation is run on the level 1 learning set, 
then only the parameters dealing with the level 1 
generalizer are being varied. The parameters dealing 
with how to construct the level 1 space (for example) 
are fixed. Under this scheme we are trying to esti- 
mate generalization accuracy in the level 1 space and 
then use that information to improve the entire struc- 

ture's generalization of the level 0 learning set. This 
scheme is equivalent to simply introducing another 
level (level 2) to the stacking of the generalizers. 
There is another way to run the cross-validation how- 
ever; treat the entire stacked generalization process 
as a generalizer of the level 0 learning set, with a 
different generalizer corresponding to each different 
set of parameter values. (Under this scheme we are 
examining all parameters, including, for example, 
those dealing with how to map from the level 0 space 
to the level 1 space.) Now run cross-validation over 
that set of generalizers. This way we are using the 
cross-validation to directly estimate generalization 
accuracy in the level 0 space, which is, after all, what 
we're ultimately interested in. With this second 
scheme, the output information going into the level 
2 learning set is coming from the level 0 learning set, 
not the level 1 learning set. 

3.2. Experiment Two 

The other numerical experiment was based on the 
NETtalk "reading aloud" problem. The parent func- 
tion for this problem has seven (suitably encoded) 
letters as input. The output of the parent function is 
the phoneme that would be voiced by an English 
speaker upon encountering the middle letter if all 
seven letters had occurred in the midst of some text 
which the speaker was reading aloud (see Carterette 
& Jones, 1974; Sejnowski & Rosenberg, 1988; Stan- 
fill & Waltz, 1986, Wolpert, 1990b).) The data set 
used for the experiment reported here was standard 
Carterette and Jones (1974), modified (as in Wol- 
pert, 1990b) to force consistency amongst the several 
speakers recorded. 

In both (Wolpert, 1990b) and (Sejnowski & Ro- 
senberg, 1988) generalizers never guess directly from 
7-letter fields to phonemes. Rather each possible 
phoneme is decomposed into a vector in a 21-di- 
mensional space (the components of which relate to 
the physical process of speech). Therefore NETtalk, 
for example, is a neural net which takes (a suitable 
encoding of) a 7-letter input field as its input, and 
guesses a vector in a 21-dimensional space. This vec- 
tor guess is then converted into a phoneme guess by 
finding the legal phoneme vector making the smallest 
angle (in the 21-dimensional space) with the guessed 
vector. To use metric-based HERBIEs for this prob- 
lem (as in Wolpert, 1990b), 21 such HERBIEs have 
to be used, one for each component of the phoneme 
vector space. As with the output neurons of NET- 
talk, the guesses of these 21 metric-based HERBIEs 
are then passed through a post-processor which com- 
bines them to form a 21-dimensional guess, which in 
turn specifies a phoneme guess. Unless otherwise 
specified, in the rest of this section, whenever the 
term "metric-based HERBIE" is used, what is really 
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meant is a set of 21 such HERBIEs  combining in the 
manner discussed here to guess a legal phoneme. 

Several separate generalizers were combined in 
the exact same manner as in the example in Section 
2. Each such level 0 generalizer was a metric-based 
HERBIE,  where four nearest neighbors were used. 
Each of these level 0 generalizers looked exclusively 
at a different one of the seven input letter slots (i.e., 
for each of them instead of using the full Hamming 
metric d(p, q) = ET=t (1 - ~(Pi, qi)), the metric d(p, 
q) = 1 - ~(Pk, qk)) for some fixed value of k was 
used. The level 0 generalizers differed from each 
other in which letter slot they looked at (i.e., they 
used different k's). (Effectively, this means that each 
of the level 0 generalizers had a different one-di- 
mensional input space rather than a seven-dimen- 
sional one, since only variations in the k-th slot had 
any effect on the guessing of the corresponding gen- 
eralizer.) 

Three level 0 generalizers were used; the first 
looked exclusively at the 3rd letter slot of the seven 
letter input field, the second looked exclusively at 
the 4th letter slot, and the third looked exclusively 
at the 5th letter slot. As in the example in Section 
2, the CVPS was used, the guesses of the level 0 
generalizers formed the inputs of the level 1 space, 
and the outputs of the level 0 and level 1 spaces were 
identical (i.e., the level 1 output space was not an 
error space), Although it might help the level 1 gen- 
eralizer if the 21-dimensional output vectors of the 
level 0 generalizer were fed into the level 1 input 
space, for simplicity the full level 0 generalizers were 
used instead and a single integer representing the 
closest phoneme to the 21-dimensional vector was 
fed into the level 1 input space. In other words, level 
1 inputs were symbolic and not real-valued. The level 
1 generalizer was a metric-based HERBIE using a 
full Hamming metric over the 3-dimensional level 1 
input space. (As usual, there were in fact 21 such 
HERBIEs,  making a 21-dimensional guess which in 
turn specified the phoneme guessed by the entire 
stacked generalizer.) 

The (level 0) learning set was made by looking 
at successive 7-letter windows of the first 1024 
words of Carterette and Jones (i.e., it consisted of 
(1024 x 5) - 6 = 5114 elements). The testing set 
was constructed from the successive 7-1etter windows 
of the next 439 words of Carterette and Jones (i.e., 
it consisted of (439 × 5) - 6 = 2189 elements). The 
three level 0 generalizers achieved a total of 507, 
1520, and 540 correct guesses, respectively, on the 
testing set. Since each guess was either correct or 
incorrect, these numbers suffice to determine exactly 
the expected error in the associated estimates of the 
average guessing accuracies: generalizer 1 had an 
average generalizing accuracy of 23% --+ .90%, gen- 
eralizer 2 had an average generalizing accuracy of 

69% +- .98%, and generalizer 3 had an average ac- 
curacy of 25% - .92%. As one would expect, gen- 
eralizer 2, looking at the middle letter of the input 
field, guesses best what phoneme should correspond 
to that middle letter. 

The stacked generalizer got 1926 correct, for an 
average accuracy of 88% - .69%. Cross-validation 
(i.e., a level 1 generalizer which worked by globally 
fitting a surface of the form {level 1 output = one 
of the level 1 inputs}), would have chosen generalizer 
2. Therefore the improvement over cross-validation 
which resulted from using a better level 1 generalizer 
was approximately 20 (of generalizer 2's) standard 
deviations. As in the surface-fitting experiment pre- 
sented earlier, presumably one could construct a 
stacked generalizer for the text-to-phoneme problem 
which performed better than the one presented here. 
This would be done by varying the parameters of the 
stacked generalizer, perhaps using a different level 
1 generalizer, etc. 

The purpose of this text-to-phoneme experiment 
wasn't to beat the performance (reported in Wolpert, 
1990b) of a metric-based HERBIE having access to 
all 7 input letters, nor even to beat the performance 
of back-propagation (i.e., NETtalk) on this data. 
Rather it was to test stacked generalization, and in 
particular to test whether stacked generalization can 
be used to combine separate pieces of incomplete 
input information. Since some of the letter slots are 
more important than others for determining the cor- 
rect phoneme output, this experiment demonstrates 
stacked generalization's ability to distinguish be- 
tween (and properly exploit) relevant and (rela- 
tively) irrelevant level 0 input information. 

4. DISCUSSION OF STACKED 
GENERALIZATION 

There are a number of subtle issues involved with 
stacked generalization. This section is an introduc- 
tion to some of them. First two potential shortcom- 
ings of stacked generalization are addressed, then a 
heuristic discussion on the behavior of stacked gen- 
eralization is presented, and then extensions and 
variations of the technique are discussed. 

4.1. Multi-valuedness and Learning 
Set Reproduction 

Consider the first example given in Section 2 of how 
to use stacked generalization, the one involving a set 
of several {Gj}. The whole process outlined in that 
example is itself a generalizer; it takes (level 0) learn- 
ing sets and (level 0) questions and maps them to 
guesses. Therefore it is sensible to ask how the whole 
process agrees with the theoretical properties which 
are often required of individual level 0 generalizers. 
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One of the first things one notices is that it is 
possible for the level 1 learning set to be multi-valued 
(i.e., the level 1 learning set might contain a pair of 
points with identical input components but different 
output components). This is because there might be 
two (or more) partitions in the partition set which 
result in the same guesses by all of the {Gj} even 
though they have different O~2's. In practice this oc- 
curs very rarely, especially if the data takes on a 
continuum of values. Moreover, unless the level 1 
generalizer tries so hard to reproduce its learning set 
that it can not deal gracefully with such multi- 
valuedness, this multi-valuedness is not, of itself, a 
reason for concern. And even if the level 1 gener- 
alizer does have a marked lack of grace under such 
conditions, if the level 1 input space is enlarged to 
include the level 0 question (or input space projec- 
tion of O~2, as the case might be), then the level 1 
learning set will now be single-valued and no prob- 
lems will arise. 

Another example of a peculiar property of stacked 
generalization concerns the issue of reproducing the 
level 0 learning set. Most conventional generalizers 
either always reproduce their learning set or strive 
to do so. However this is not necessarily the case 
with the whole process of stacked generalization 
(viewed as a generalizer of the level 0 learning set), 
regardless of whether or not the constituent level 0 
and level 1 generalizers necessarily reproduce their 
learning sets. This lack of reproducing the learning 
set might not be a problem. For example, when one 
has noisy data, exact reproduction of the learning 
set is rarely desirable. (Indeed, the behavior of a 
stacked generalizer when one has large learning 
sets can perhaps be used as means of determin- 
ing whether or not one's data is noisy.) And for 
non-noisy data, it should often be the case that if the 
learning set is large enough, then the learning set is 
reproduced, to a good approximation. 

Nonetheless, there are many cases where one 
would like to enforce exact reproduction of the learn- 
ing set. There are several ways to achieve this. The 
most obvious is to simply place a filter on the ques- 
tions being fed to the stacked generalizer: if a level 
0 question already exists in the (level 0) learning set, 
bypass the generalizers and answer that question di- 
rectly from the learning set. (After all, the purpose 
of stacked generalization is to improve guessing for 
questions outside of the learning set, not to pro- 
vide a complicated means of implementing the 
look-up-table "if the question is in the input projec- 
tion of the learning set, guess the corresponding out- 
put.") 

A more elegant scheme has been devised by Gus- 
tafson et ai. (1990): require that the level 1 surface 
guessed by the level 1 generalizer contains the line 

ae, where a runs over the reals and e is a diagonal 
vector, that is a vector in R k÷l all k + 1 of whose 
coordinate projections are identical and nonzero 
(k being the dimensionality of the level 1 input 
space). Under this scheme, so long as the level 0 
generalizers all reproduce the level 0 learning set, 
then so will the entire stacked generalizer. The rea- 
son is that if the level 0 question is contained in the 
level 0 learning set, then all the level 0 generalizers 
will make the same guess (namely the output com- 
ponent of the corresponding element of the level 0 
learning set), and then this level 1 generalizer will 
also make that guess. 

There are other ways to ensure reproduction of 
the learning set which do not restrict the level 1 gen- 
eralizer. For example, one could, so to speak, teach 
the level 1 generalizer to reproduce the level 0 learn- 
ing set. To do this, for every set Oil do not simply 
create the single element of the level 1 learning set 
corresponding to Oi2 = O - Oil. Rather for each 
Oi~ create m points in the level 1 space, one for all 
m possible values of O~2 (i.e., allow Oi2 to range over 
all O rather than just over O - O~t). Modulo any 
issues of multi-valuedness of the level 1 learning set, 
so long as the individual level 0 and level 1 gener- 
alizers reproduce their learning sets, then under this 
scheme so will the entire stacked generalizer. 

There are many other criteria one might require 
of a generalizer in addition to reproduction of the 
learning set. For example, one might require that the 
generalizer be invariant under Euclidean symmetry 
operations in the level 0 space R n*~ (see Wolpert, 
1990c). In practice, although many of the general- 
izers commonly used reproduce learning sets, few 
meet these additional generalization criteria (despite 
the reasonableness of these criteria). The result is 
that modifying stacked generalization to necessarily 
obey these criteria is a nontrivial exercise, since in 
practice the constituent generalizers will often violate 
them. A full discussion of this and related issues 
concerning stacked generalization and generalization 
criteria is beyond the scope of this paper. 

4.2. Heuristics Concerning the Behavior of 
Stacked Generalization 

This subsection is a cursory heuristic examination of 
those properties of the individual level 0 and level 1 
generalizers which have particularly pronounced ef- 
fects on the efficacy of stacked generalization. 

Many generalizers are explicitly local, meaning 
the guess they make is overtly dependent in a very 
strong manner on the nearest neighbors of the ques- 
tion in the learning set. Many other generalizers, 
while not explicitly local, act locally. For example, 
back-propagation behaves somewhat locally (see 
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(Lapedes & Farber, 1988) and the discussion in (Wol- 
pert, 1990e) on using back-propagation to try to gen- 
eralize the parity input-output function). 

Care must be taken whenever one is using such a 
local generalizer with a CVPS, especially when one 
is using that generalizer by itself (i.e., when that 
generalizer is the only level 0 generalizer). The rea- 
son is that for several of the i values, the element 
Oi2 = O - Oil is one of the elements of O which lie 
closest to the level 0 question. Therefore in trying 
to determine and correct for the biases the level 0 
generalizer will have when generalizing with the full 
learning set O, training is being done on learning sets 
with different nearby elements from the nearby ele- 
ments in the full learning set. However, the gener- 
alizing of the local generalizer is strongly dependent 
on the set of nearby elements of the learning set, 
by hypothesis. Accordingly, the information in the 
level 1 learning set can be extremely misleading in 
how it implies the level 0 generalizer will err when 
answering the level 0 question via the full level 0 
learning set. 

The natural way to get around this problem is to 
have the level 1 input space contain information on 
the nearby elements of level 0 learning set. That way 
the dependence on the nearby elements of the learn- 
ing set is being learned. This is exactly the strategy 
that was followed in the example in Section 2 and 
the first experiment in Section 3. 

There exist other situations where care must be 
exercised in using stacked generalization. For ex- 
ample, when the level 1 inputs are given by the out- 
puts of the level 0 generalizers (as in the first example 
in Section 2), poor choice of the level 1 generalizer 
can actually result in generalization performance 
worse than that of the level 0 generalizers run by 
themselves. A full characterization of the desirable 
traits of level 1 generalizers for this situation is not 
yet in hand, but some broad observations can be 
made. In this context, when the level 1 generalizer 
is explicitly a surface-fitter, best behavior accrues 
(usually) when that generalizer is relatively global, 
nonvolatile and smooth, and not overly concerned 
with exact reproduction of the level 1 learning set. 
For example, in the ongoing work with Lapedes and 
Farber mentioned at the beginning of Section 3, the 
level 1 input space is only 3-dimensional. Nonethe- 
less, the best level 1 generalizers found so far oper- 
ate by performing what is essentially a uniformly 

eighted average over several hundred of the nearest 
neighbors of the level 1 question. An even more 
extreme example is any use of stacked generalization 
where the level 1 generalizer is a global hyperplane 
fitter (e.g., cross-validation). 

The following simplistic analysis shows why it is 
reasonable that "relatively global, s m o o t h . . . "  level 

I generalizers should perform well. Imagine we have 
a single level 0 generalizer, G, and the level 1 input 
space is the guess of G. The level 1 outputs are the 
same as the level 0 outputs. For simplicity, have both 
the level 0 and level 1 output spaces be discrete- 
valued with values {1, 2, 3 . . . . .  s}. Let the 
level 1 generalizer be H. Now assume that G is 
a fairly good generalizer for the parent function 
under consideration. More precisely, assume that in- 
dependent of what guess G makes, that guess is cor- 
rect exactly 70% of the time. Furthermore, assume 
that there is only one way that G can be fooled for 
a given guess (i.e., whenever G guesses a particular 
t E {1, 2, 3 . . . . .  s}, then the correct guess is always 
either t or some other particular number u, E {1, 2, 
3 . . . . .  s} which is determined uniquely by t). Now 
look at a level 1 input space value x E {1, 2, 3 , . . .  , 
s}. Assume there are p > 0 points in the level 1 
learning set with this input coordinate. Define P(cr, 
fl = p - a) as the probability that a of the p elements 
have output x (meaning G guessed correctly) and fl 
of them have output vx. P(a ,  fl) = (.7)~(1 - .7)a 
Uo!/(a! fl!)], and is independent of the value of G's 
guess (i.e., this probability is independent of the level 
1 input value x). Now because G is correct 70% of 
the time, in the absence of additional information 
one should always guess G's output. However, if 
fl > a, then most level 1 generalizers presented with 
the question x would guess vx rather than x. (This is 
especially true if a = 0, in which case there is no 
evidence at all that one should guess anything other 
than vx when presented with x.) Assume H has this 
behavior. Then ifp is small for all level 1 input space 
projections of the level 1 learning set, P(a,  fl > a) 
is sizable for all those projections of the level 1 learn- 
ing set. As a result it is likely that a relatively large 
fraction of those level 1 learning set input space pro- 
jections have fl > a (i.e., a relatively large fraction 
of the times H is presented with a question which 
exists in the level 1 learning set that learning set will 
lead H to guess vx rather than G's guess, x). There- 
fore, using stacked generalization with G feeding the 
level 1 generalizer H will lead to worse guesses than 
simply using G directly, on average. 

This type of problem can occur even if the level 
1 input space is multi-dimensional. One simple way 
around it is to modify H to implicitly estimate G's 
overall guessing accuracy and then make use of 
this estimate. To make such an estimate, the level 1 
generalizer must examine a large number of the 
elements of the level 1 learning set and run a 
cross-validation-type procedure over them (i.e., 
measure the fit of the hyperplane {output = G's 
guess} over those elements). Preferably, these ex- 
amined elements are nearby elements of the level 1 
question x, so we do not have to worry about the 
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fact that in genearl G's guessing accuracy might de- 
pend on the value of G's guess (unlike in the toy 
argument above). Putting these requirements to- 
gether, we get level 1 generalizers which are "rela- 
tively global, nonvolatile and smooth, and not overly 
concerned with exact reproduction of the level 1 
learning set." Such level 1 generalizers can be viewed 
as systems which, in effect, boost a (i.e., the number 
of times G is observed to be right) and fl (i.e., the 
number of times G is observed to be wrong) by ex- 
amining many nearby elements of the level 1 learning 
set. With a and fl boosted in this way, P(a,  fl > a) 
becomes small, and our problem is rectified. 

Generically, when the level 1 inputs are given by 
the outputs of the level 0 generalizers, one wants 
those generalizers to (loosely speaking) "span the 
space of generalizers" and be "mutually orthogonal" 
in that space, For example, imagine we have two 
level 0 generalizers, A and B, whose guesses directly 
give us the level 1 inputs (see Figure 3). Say A is a 
good generalizer for the parent function, whereas B 
is not a particularly good generalizer for that func- 
tion. Then the only possible advantage of using B 
along with A in a stacked generalization structure is 
if B adds information not provided by A (i,e., if the 
correlation between a correct output and the pair 
{A's guess, B's guess} is greater than the correlation 
between a correct output and the singlet {A's guess}). 
If this is not the case, then B will simply be a red 
herring, whose guess is redundant with A's (at best). 
It is for these kinds of reasons that the level 0 gen- 
eralizers should be "mutually orthogonal." 

Similar reasoning justifies the statement that one 
wants the level 1 generalizers to "span the space." 
It is usually desirable that the level 0 generalizers are 
of all "types," and not just simple variations of one 
another (e.g., we want surface-fitters, Turing- 
machine builders, statistical extrapolators, etc.). In 
this way all possible ways of examining the learning 
set and trying to extrapolate from it are being ex- 
ploited. This is part of what is meant by saying that 
the level 0 generalizers should "span the space." 
Such spanning is important because stacked gener- 
alization is not just a way of determining which level 
0 generalizer works best (as in cross-validation), nor 
even which linear combination of them works best 
(as in Gustafson et al.,'s (1990) scheme); rather 
stacked generalization is a means of nonlinearly com- 
bining generalizers to make a new generalizer, to try 
to optimally integrate what each of the original gen- 
eralizers has to say about the learning set. The more 
each generalizer has to say (which is not duplicated 
in what the other generalizer's have to say), the bet- 
ter the resultant stacked generalization. 

Another aspect of what "span the space" means 
is made clear from the discussion at the very begin- 

ning of this subsection concerning the heuristics of 
stacked generalization with a single, local general- 
izer: we would like the output values of the level 0 
generalizers to give us all the salient information con- 
cerning the nearby elements in the level 0 learning 
set. These generalizers should collectively tell us all 
that is important about the level 0 learning set, since 
otherwise the mapping from the level 0 space to the 
level 1 space has involved a loss of important infor- 
mation. 

Stacked generalization is often nothing more than 
applying a nonlinear transformation to the elements 
of the learning set before generalizing from them 
(with the level 1 generalizer). (The nonlinear trans- 
formation is determined by what level 0 generalizers 
are used, how they map to the level 1 space, etc.) 
Saying that the generalizers should be "mutually or- 
thogonal and span the space" essentially means that 
on the one hand that nonlinear transformation 
should preserve all the important information in the 
learning set, while at the same time, it should not 
preserve the redundant and irrelevant information 
in the mapping from the level 0 space to the level 1 
space. 

4.3. Extensions and Variations 

There are many interesting implementations of the 
basic idea of stacked generalization. First, note that 
the idea of having the level 1 output be an error 
estimate of a level 0 generalizer G can be applied 
even when there are other level 0 generalizers in 
addition to G, all feeding into the level 1 input space. 
In this case the outputs of the other generalizers are 
now providing us with information concerning the 
likely error of G when generalizing from O. There 
are a number of advantages to such schemes where 
the level 1 output is not interpreted as a guess but 
rather as an estimate of the error in a guess. For 
example, with such a scheme the dimensionality of 
the level 1 input space can be reduced by one without 
losing any information. (G need no longer feed into 
the level 1 space to get information concerning G's 
guess--that information comes in when we subtract 
the estimated error from G's guess.) Moreover, this 
scheme allows us to be "conservative"; we can mul- 
tiply the error estimate by a fraction before subtract- 
ing it from G's guess. In this way we can directly 
control a parameter (the multiplicative fraction) 
which determines to what extent we use stacked gen- 
eralization and to what extent we simply use G by 
itself. 

As another interesting implementation, since a 
stacked generalization structure is itself a general- 
izer, the whole thing can be stacked, and these stack- 
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ings can be combined into a network structure. 7 All 
the usual net games (e.g., back-propagation) can 
then be applied to this network structure. Another 
interesting variation is to have the level 0 generalizers 
all be similar, relatively dumb systems. An example 
of such a system is the following generalizer: "guess 
the output value of the point in the learning set whose 
input component lies closest to the vector sum of 
some fixed input space vector with the question." 
Different level 0 generalizers have a different "fixed 
input space vector." (If that "fixed input space vec- 
tor" = 0, then we recover the traditional nearest 
neighbor generalizer.) Nonlinear time-series anal- 
ysis, with its "delay embedding" (Casdagli 1989, 
Farmer & Sidorowich 1988), is an example of such 
a use of stacked generalization with a set of simi- 
lar, dumb, level 0 generalizers. 8 Other examples of 
this kind of implementation of stacked generaliza- 
tion are fan generalizers (Wolpert, 1990e), the ex- 
tension of nonlinear time-series analysis to multiple 
input dimensions. 9 

Other variations are interesting as tools for the- 
oretical investigations of stacked generalization. For 
example, let N, the number of generalizers, equal n, 
the dimension of the level 0 input space, and also 
use a partition set in which r = m. Use multiple 
stacking and have the level k space's inputs be the 
outputs of the N level (k - 1) generalizers, exactly 
as in the example in Section 2 (where k = 1). For 
this implementation of stacked generalization, when 
producing the learning set one level above it, 
any generalizer, no matter what  level it is working 
at, reduces to a single unique function g,,,_~, tak- 
ing as argument an n-dimensional question and an 
(m - 1)-element learning set whose input space is 
n-dimensional. As a result, we can explicitly analyze 
the behavior of the whole system as more and more 

7 This is essentially what is done in (Wolpert, 1990d), where 
a genetic evolution process is used to create a feedback net of 
generalizers. (In Wolpert (1990d), the output of this feedback net 
of generalizers is fed through yet another generalizer to get the 
final guess. This final generalizer has its learning set constructed 
so that the original level 0 learning set is reproduced. The learning 
sets for all the other generalizers are instead determined by the 
evolutionary development of the net. The fitness function for this 
evolution is the cross-validation error of the entire system.) One 
interesting aspect of such nets of generalizers is that one can have 
an "environment generalizer." One (or more) of the nodes in the 
net can be reserved for a generalizer whose input-output function 
serves the same purpose as input lines in more conventional ar- 
chitectures. For example, a one-dimensional input environment, 
say of brightness versus angle, is a function. Discretize the in- 
dependent variable of this function and feed the resultant numbers 
into the input nodes, one number per node, and you get the 
conventional way of feeding data into a net. If instead one finds 
a learning set which, when generalized (by a surface-fitter say) 
gives you the environment function, then you can insert that gen- 

eralizer together with that learning set (i.e., that environment 
function) as an "environment generalizer" node in the net. With 
this scheme different environments do not correspond to different 
values on input lines; they correspond to different environment 
generalizers at the appropriate nodes of the net. This scheme has 
the advantages that it allows the net to actively query its envi- 
ronment,  and also allows that environment to have arbitrary size. 
(Neither of these properties hold for the conventional process of 
discretizing that environment and feeding it into input nodes. See 
(Wolpert, 1990d) for details.) 

In conventional univariate nonlinear time-series analysis, one 
is provided a sequence of values of a single-dimensional variable 
for a set of times: y ( # ) ,  1 -< ] <- m, r some real-valued constant. 
To try to generalize from the sequence one assumes that the value 
o fy  at a time t ,  y ( t ) ,  is determined by its value at a set o f p  delays, 
y ( t  - r), y ( t  - 2r) . . . . .  y(t - pr) .  To exploit this assumption 
one "embeds"  the original sequence as a learning set in a space 
with p dimensions of input and one dimension of output. Each 
element of this delay-space learning set has its input components 
set to the values y ( t  - r), y ( t  - 2r) . . . . .  y(t - pr)  for some 
sequence of p values chosen from the provided time-series, and 
the output value of that element is now the value of the point 
y(t), again read off of that time-series. One has as many points 
in the delay-space learning set as there are sequences of p + 1 
consecutive points in the time series. To make a prediction for 
y ( T ) ,  given the p values y ( T  - r), y ( T  - 2r) . . . . .  y(T - pr) ,  
one simply generalizes in the delay space (i.e., one guesses what 
output should correspond to the delay space question {y(T - r), 
y(T - 2r) . . . . .  y ( T  - pr)}, basing this guess on the delay space 
learning set). Viewed in terms of stacked generalization, this 
whole embedding procedure is nothing more than a set of level 
0 generalizers feeding into a level 1 generalizer. The level 0 learn- 
ing set has a one-dimensional input space-- i t  is the time series. 
The p constituent level 0 generalizers are all predicated on the 
assumption that that time series is periodic. They differ from one 
another only in what period they assume for the series; one level 
0 generalizer assumes period r, one assumes period 2r, etc., all 
the way up to an assumption of period pr. (In order,  these gen- 
eralizers work by predicting y(t) = y(t - r), by predicting y(t - 
2r), etc.) The level 1 generalizer is just the delay-space general- 
izer. When presented with the question ) , ( t ) ,  the k-th level 0 gen- 
eralizer in conventional nonlinear time-series analysis makes a 
guess which is completely independent of all of the elements of 
the level 0 learning set except for y ( t  - kr); quite a dumb gen- 
eralizer. From this perspective of stacked genealization, one can 
immediately see an obvious way to try to improve the performance 
of nonlinear time-series analysis: replace the p level 0 generalizers 
which rigidly assume exact periodicity with periods r. 2r . . . . .  
p r  with generalizers which are not quite so pig-headed. For ex- 
ample, one could instead use generalizers which only assume that 
y ( t )  is se t  b y  y ( t  - r), that y ( t )  is set by y ( t  - 2r), etc. All these 
level 0 generalizers could then use a conventional generalizer 
(e.g., a metric-based HERBIE)  along with the entire (!) time- 
series to estimate h o w  y ( t )  is set by y ( t  - r), how y(t) is set by 
y(t - 2r), etc. Under this scheme, instead of simply having the 
k-th level 0 generalizer predict e x a c t l y  y(t - kr) when provided 
with the question y ( t ) ,  that generalizer guesses what answer should 
correspond to y ( t )  b a s i n g  the guess on y(t - kr). 

It's interesting to examine fan generalizers from the point of 
view of the discussion earlier on "spanning the space of gener- 
alizers." Although producing the inputs of the level 1 learning set 
exclusively from the outputs of the level 0 learning set, fan gen- 
eralizers nonetheless preserve all the "'salient" information about 
the input space geometry of the level 0 learning set. They do this 
via the fan itself, which consists entirely of level 0 input space 
information and is crucial to the construction of the input com- 
ponents of the elements of the level 1 learning set. 
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stacking levels are added. For example, we can con- 
sider the case where each level has a single learning 
set, and all such learning sets feed serially into the 
set one level above, all according to the exact same 
rules. (Such a structure is a multilayer net, where 
each node is a learning set, there exists one node per 
layer, and information is fed from one node to the 
next via the N generalizers.) For such a scenario the 
successive levels act upon the learning set like suc- 
cessive iterations of an iterated map. Therefore, the 
usual nonlinear analysis questions apply: when does 
one get periodic behavior? When does one get cha- 
otic behavior? What are the dimensions of the at- 
tractors?, etc. Once answered, such questions would 
presumably help determine how many levels to stack 
such a system. 

Yet another interesting theoretical scenario arises 
when not only can all the guessing mappings taking 
one learning set to the next be reduced to a single 
function gm-~, but so can the guessing for questions 
outside of the learning set(s). This full reduction usu- 
ally does not obtain due to the fact that the cardi- 
nality of Oi~ is less than the cardinality of the full O, 
and therefore a question ~ O goes through a differ- 
ent g than Oi2 (g,, vs. g,,_ ~). (The same conundrum 
arises when trying to provide theoretical justifica- 
tions for techniques like cross-validation.) One ob- 
vious way around this difficulty is to have g,, fixed 
by g,,_~. For example, one could define g,,,(@; q) -= 
(g,,,-~(Oi~; q))l~l, where the O~ are chosen from 
the CVPS of O. (The averaging can either be done 
with a uniform weighting over all m numbers 
g,,_~(O~; q), or those numbers might be weighted 
according to the error value Igm-i(O/t; input com- 
ponent of Oi2) - (output component of Oi2)1.) In 
this way an analysis of the generalizing behavior 
of stacked generalization and its relation to the 
constituent generalizers could be cast in terms 
of the behavior of a single function. 

Finally, it is interesting to note that some authors 
have investigated what amounts to stacked gener- 
alization in the context of improving learning (i.e., 
improving reproduction of the learning set) rather 
than improving generalization. In such a context, Ojj 
can be allowed to run over the entire learning set. 
An example of such a scheme is investigated in (Dep- 
pisch et al., 1990). The level 1 generalizer used in 
Deppisch et al. (1990) is back-propagation on stan- 
dard feed-forward neural nets, and the level 1 output 
space is the error of the level 0 genearlizer. The level 
1 input space is identical to the level 0 input space. 
The level 0 generalizer is also back-propagation on 
standard feed-forward neural nets, only restricted to 
have a nonzero resolution in its output. Evidence is 
presented in Deppisch et al. (1990) indicating that 
this scheme achieves much lower learning error than 

a single back propagation generalizer, and does so 
in much less time. 

It should be noted however that although a par- 
tition set of the type implicitly used in Deppisch 
et al. (1990) might help learning, it entails some ma- 
jor disadvantages as far as generalization is con- 
cerned. For example, if this partition set is used when 
there is no noise, and if one of the level 0 generalizers 
guesses perfectly for questions on which it has al- 
ready been trained, then, as far as the level 1 gen- 
eralizer can tell, that level 0 surface-fitter always 
guesses perfectly for all questions. Accordingly, any 
reasonable level 1 generalizer will simply say that 
one should use that level 0 generalizer directly, and 
ignore any other level 0 information. In general, 
when using this partition set one is not "generalizing 
how to generalize" but rather "generalizing how to 
learn," in that the level 1 space contains information 
on how well the level 0 generalizers learn, but not 
on how well they generalize. 

5. CONCLUSION 

Stacked generalization is a generic term referring to 
any scheme for feeding information from one set of 
generalizers to another before forming the final 
guess. The distinguishing feature of stacked gener- 
alization is that the information fed up the net of 
generalizers comes from multiple partitionings of the 
original learning set, all of which split up that learn- 
ing set into two subsets. Each such pair of subsets is 
then used to glean information about the biases of 
the generalizing behavior of the original general- 
izer(s) with respect to the learning set. (Note that 
this is not the same as the biases of the learning 
behavior of the original generalizer(s). It is this bias 
information which is fed up the net; stacked gener- 
alization is a means of estimating and correcting for 
the biases of the constituent generalizer(s) with re- 
spect to the provided learning set. 

Stacked generalization can be used with a single 
generalizer, in which case it is explicitly a scheme for 
estimating and correcting the errors of that gener- 
alizer. The surface-fitting experiments reported here 
indicate that it can be quite effective at correcting 
those errors. When used with multiple generalizers 
all of which feed into a single back-end generalizer, 
certain special cases of stacked generalization are 
exactly equivalent to cross-validation, certain are ex- 
actly equivalent to forming a linear combination of 
the guesses of the constituent generalizers, etc. All 
such special cases correspond to the assumption of 
a particular (invariably rather dumb) back-end gen- 
eralizer. As with any other generalizing problem, use 
of more sophisticated generalizers should be ex- 
pected to give improved results. This is indeed the 
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case, according to the NETtalk-type experiments re- 
ported here and according to other experiments re- 
ported elsewhere. The conclusion is that for many 
generalization problems stacked generalization can 
be expected to reduce the generalization error rate. 
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