
Neural Networks, Vol. 5, pp. 241-259, 1992 0893-6080/92 $5.00 + .00
Printed in the USA. All rights reserved. Copyright © 1992 Pergamon Press Ltd.

ORIGINAL CONTRIBUTION

Stacked Generalization

DAVID H . W O L P E R T

Complex Systems Group, Theoretical Division, and Center for Non-linear Studies

(Received 16 January 1991 ; revised and accepted 29 July 1991)

Abstract--This paper introduces stacked generalization, a scheme for minimizing the generalization error rate
of one or more generalizers. Stacked generalization works by deducing the biases of the generalizer(s) with
respect to a provided learning set. This deduction proceeds by generalizing in a second space whose inputs are
(for example) the guesses of the original generalizers when taught with part of the learning set attd trying to
guess the rest o f it, and whose output is (for example) the correct guess. When used with multiple generalizers,
stacked generalization can be seen as a more sophisticated version of cross-validation, exploiting a strategy more
sophisticated than cross-validation's crude winner-takes-all for combhling the individual generalizers. When used
with a single generalizer, stacked generalization is a scheme for estimating (and then correcting for) the error
of a generalizer which has been trained on a particular learning set and then asked a particular question. After
introducing stacked generalization and justifying its ase, this paper presents two numerical experiments. The
first demonstrates how stacked generalization improves upon a set of separate generalizers for the NETtalk task
of translating text to phonemes. The second demonstrates how stacked generalization improves the performance
of a single surface-fitter. With the other experimental evidence in the literature, the usual arguments supporting
cross-validation, and the abstract justifications presented in this paper, the conclusion is that for ahnost any real-
world generalization problem one should use some version of stacked generalization to minimize the generali-
zation error rate. This paper ends by discussing some of the variations of stacked generalization, and how it
touches on other fields like chaos theory.

Keywords--Generalization and induction, Combining generalizers, Learning set preprocessing, cross-vali-
dation, Error estimation and correction.

1. I N T R O D U C T I O N

This paper concerns the problem of inferring a func-
tion from a subset of R" to a subset of RP (the parent
function) given a set of m samples of that function
(the learning set). The subset of R" is the input space,
and the subset of R~' is the output space. A question
is an input space (vector) value. An algorithm which
guesses a parent function, basing the guess only on
a learning set of m R "+p vectors read off of that
parent function, is called a generalizer. A generalizer
guesses an appropriate output for a question via the
parent function it infers from the learning set. For
simplicity, although the analysis of this paper holds
for any positive integer p, unless explicitly indicated
otherwise I will always take p = 1.

In this paper I am usually assuming noiseless data.

This work was performed under the auspices of the Depart-
ment of Energy.

Requests for reprints should be sent to David H. Wolpert,
Complex Systems Group, Theoretical Division, and Center for
Non-linear Studies. MS B213. LANL, Los Alamos, NM 87545.

241

This means that the best guesses for the inputs of
elements of the learning set are already known to
us - - they are provided by the learning set. Building
a system to guess properly for those elements (i.e.,
"learning that learning set") is trivial, and can be
achieved simply by building a look-up table. (Diffi-
culties only arise when one insists that the look-up
table be implemented in an odd way (e.g., as a feed-
forward neural net).) Therefore, in this paper the
questions of interest are almost always outside of the
learning set.

Some examples of generalizers are back-
propagated neural nets (Rumelhart & McClelland,
1986), Holland's (1975) classifier system, and Ris-
sanen's (1986) minimum description length principle
(which, along with all other schemes which attempt
to exploit Occam's razor, is analyzed in (Wolpert,
1990a)). Other important examples are memory-
based reasoning schemes (Stanfill & Waltz, 1986),
regularization theory (Poggio et al., 1988), and sim-
ilar schemes for overt surface fitting of a parent func-
tion to the learning set (Farmer & Sidorowich, 1988;
Omohundro, 1987; Wolpert, 1989; Wolpert 1990a;
Wolpert, 1990b).

242 D. H. Wolpert

In this paper I will primarily be interested in gen-
eralizers which are capable of guessing as output a
number which does not occur as an output value in
the learning set. Conventional classifiers (e.g., ID3
(Quinlan, 1986), Bayesian classifiers like Schlim-
reef's Stagger system (Dietterich, 1990), etc.) do not
have this flexibility, although in all other respects
they are valid examples of generalizers.

This paper introduces stacked generalization, a
technique whose purpose is to achieve a generali-
zation accuracy (as opposed to learning accuracy)
which is as high as possible. The central idea is that
one .can do better than simply list all guesses as to
the parent function which are consistent with a learn-
ing set (as is done in PAC-style learning (Dietterich
1990; Valiant 1984), for example). One can also use
in-sample/out-of-sample techniques to try to find a
best guesser of parent functions (or to try to find a
best combination of guessers of parent functions).
By creating a partition of the learning set, training
on one part of the partition, and then observing be-
havior on the other part, one can try to deduce (and
correct for) the biases of one or more generalizers
with respect to that learning set. Loosely speaking,
in addition to finding all theories consistent with a
set of data, by means of partitions of the data one
can also construct a best theorist, and then use which-
ever theory it prefers. I

There are many different ways to implement
stacked generalization. Its primary implementation
is as a technique for combining generalizers, al-
though it can also be used when one has only a single
generalizer, as a technique to improve that single
generalizer.

For any real-world learning set O, there are always
many possible generalizers {Gi} one can use to ex-
trapolate from O. One is always implicitly presented
with the problem of how to address this multiplicity
of possible generalizers. Most algorithmic schemes
for addressing this problem, including in particular
nonparametric statistics techniques like cross-
validation (Efron, 1979; Stone, 1977), generalized
cross-validation (Li, 1985) and bootstrapping (Efron,
1979), are winner-takes-all strategies. These schemes
can be viewed as mappings which take an arbitrary
generalizer and learning set as input, and give as
output an estimate of the average generalizing ac-

Strictly speaking, the amount of information in the learning
set - the number of bits defining the set of parent functions
consistent with that learning set (see Anshelevich, Amirikian,
Lukashin, & Frank-Kamenetskii, 1989). The extra information
implicit in stacked generalization comes from the assumption that
in-sample/out-of-sample techniques are accurate indicators of
generalization behavior for the entire learning set. This assump-
tion is implicit in most nonparametric statistics techniques (e.g.,
the nonparametric statistics techniques discussed below).

curacy of that generalizer, for the unknown parent
function which generated the learning set. To use
such a mapping one simply picks that G ~ {Gi} which,
together with O, has the highest estimated general-
ization accuracy according to the mapping, and then
uses that G to generalize from O.

In contrast, stacked generalization provides a
strategy for this situation which is more sophisticated
than winner-takes-all. Loosely speaking, this strat-
egy is to combine the {Gj} rather than choose one
amongst them. This can be done (for example) by
taking their output guesses as input components of
points in a new space, and then generalizing in that
new space (see Figure 1).

Later on in this paper winner-takes-all strategies
will be shown to be a special case of using stacked
generalization in this manner, where one is doing the
generalization in the "new space" by means of a
global fit of a highly restricted hyperplane. Accord-
ingly, stacked generalization can be viewed as a more
flexible version of nonparametric statistics tech-
niques like cross-validation. In particular, all the
usual arguments supporting such techniques apply
even more strongly to stacked generalization, and
therefore it can be argued that for almost any gen-
eralization or classification problem, since invariably
there is more than one generalizer which can be ap-
plied to the problem, to maximize the generalization
accuracy one should use s tacked genera l iza t ion
rather than any single generalizer by itself. 2

In addition to viewing it as an extension of con-
cepts like cross-validation, stacked generalization
can also be viewed as a means of collectively using
all of the {Gj} to estimate their own generalizing
biases with respect to a particular learning set, and
then filter out those biases. This description is par-
ticularly apt in the variation of stacked generalization
appropriate when one only has a single generalizer.
In such a situation, stacked generalization is (overtly)
a scheme for estimating the errors of a generalizer
when working on a particular learning set, and then
correcting those errors (see Figure 2).

Section 2 of this paper presents a rigorous defi-
nition of stacked generalization and discusses why it
would be expected to improve generalization accu-

: There are no guarantees, of course. Some noncross-valida-
tion schemes for choosing amongst a set of generalizers (e.g.,
parsimony, or even random choice) will in certain circumstances
result in choosing a generalizer which has a lower generalization
error rate than the generalizer chosen by cross-validation. Simi-
larly, in certain circumstances some scheme other than stacked
generalization (e.g., just using one of {Gj} straight, by itself) will
outperform stacked generalization. This nonuniversality is inev-
itable, and holds for any generalizing scheme whatsoever, due to
the fact that guessing a parent function based on only a finite
number of samples of it is an ill-posed problem in the Hadamard
sense (see Morozov, 1984).

Stacked Generafization 243

The full learning set. L

Correct output

0 • = elcmcnl of L"

e •

i ,"" The guess of G 1
!,,

Q

The guess of G 2

FIGURE 1. An example of how to use stacked generalization
to combine generalizers. Here we are combining two gen-
eralizers, G1, and G2. The learning set, L, is represented fig-
uratively by the full ellipse. A question q lying outside of L
is also indicated. Finally, a partition of L into two portions is
also indicated; one portion consists of the single input-out-
put pair (x, y), and the other portion contains the rest of L.
Given this partition, we train both G, and G2 on the portion
{L - (x, y)}. Then we ask both generalizers the question x;
their guesses are g, and g2. In general, since the generalizers
have not been trained with the pair (x, y), both gl and g2 will
differ from y. Therefore, we have just learned something;
when G~ guesses g~ and G2 guesses G2, the correct answer
is y. This information can be cast as input-output information
In a new space (i.e., as a single point with the 2-dimensional
input (g, g2) and the output (y). Choosing other partitions
of L gives us other such points. Taken together, these points
constitute a new learning set, L'. We now train G, and G2 on
all of L and ask them both'the question q. Then we take their
pair of guesses, and feed that pair as a question to a third
generalizer which has been trained on L'. This third gener-
alizer's guess is our final guess for what output corresponds
to q. Assuming there's a strong correlation between the
guesses made by G~ and G2 on the one hand, and the correct
guess on the other, This implementation of stacked gener-
alization will work well.

racy. Section 3 of this paper then presents two ex-
perimental examples of using stacked generalization.
The first is using it to improve the performance of a
single generalizer (here an explicit surface-fitting al-
gorithm). The second is using it to improve upon the
individual performance of several generalizers for a
modified version of the text-to-phoneme data set that
went into making NETtalk (Carterette & Jones,
1974; Sejnowski & Rosenberg, 1988; Stanfill &
Waltz, 1986; Wolpert, 1990b). Section 4 then dis-
cusses some of the myriad variations and extensions

of stacked generalization, some of the ways it can be
approached theoretically, and some heuristics con-
cerning the scheme's behavior.

It would be impossible to investigate in great
depth all of the theoretical and empirical issues con-
cerning stacked generalization in a single paper. This
paper is instead intended to serve as a broad intro-
duction to the idea of stacked generalization and its
many variations.

The full learning set, L

l i

Error of G's guess ~ / ~

0 • = clcmcm of L'

! ° .
: ,,,,"" Input - nearest neighbor

6,,'

Input

FIGURE 2. An example of how to use stacked generalization
to improve a single generalizer. The (single) generalizer Is
G. As in Figure 1, a learning set L is reprsented figuratively
by the full ellipse, a question q lying outside of L Is also
indicated, and a partltion of L into two portions is also shown.
Given this partition, we train G on the portion {L - (x, y)}.
Then we ask G the questlon x, and note both its guess, g
and the vector from x to its nearest neighbor in {L - (x, y)},
6. In general, since G has not been trained with the pair
(x, y), g will differ from y. Therefore, we have just learned
something; when the question Is x, and the vector from x to
the nearest nelghbor In the learnlng set Is 6, the correct
answer differs from G's guess by (g - y). This information
can be cast as input-output informatlon In a new space (l.e.,
as a slngle point with the 2-dlmenslonal Input (x, 6) and the
output (g - y). Chooslng other partitlons of L gives us other
such polnts. Taken together, these polnts constitute a new
learnlng set, L'. We now train G on all of L and ask It the
question q. Then we take the palr of q and the vector from
q to its nearest neighbor In L, and feed that pair as a question
to a third generalizer which has been trained on L'. This third
generalizer's guess is our guess for G's error in guessing
what output corresponds to q. Adding this estimated error
(or a fraction thereof) back to G's guess gives our final guess.
Assuming there's a strong correlation between the question
and its vector to the nearest element In the learning set on
the one hand, and the generalizer's error on the other, this
implementation of stacked generalization will work well.

244 D. H. Wolpert

2. HOW STACKED GENERALIZATION
WORKS

For full rigor, I will first provide a mathematical
definition of a generalizer. Then I will define the
process of stacked generalization, giving a rigorous
definition of cross-validation along the way. Unfor-
tunately, it is in the nature of stacked generalization
that presenting it in full generality and full rigor
makes it appear more complicated than it really is.
At the end of this section, two examples are provided
to mitigate this effect. The first example is of a way
to use stacked generalization with multiple gener-
alizers, and the second example is of a way to use it
with a single generalizer.

2.1. Generalizers

A generalizer is a mapping taking {a learning set of
m pairs {Xk E R", Yk ~ R}, 1 ~< k ~< m, together with
a question E R"} into {a guess E R}. (Full generality
would have the guess E RP, not R. However for
most applications one can replace a generalizer mak-
ing guesses in R ~ with the Cartesian product of p
separate generalizers making guesses in R. Accord-
ingly, in this paper p is taken to equal 1 (see Wolpert,
1989). For a given n, such a mapping is equivalent
to a countably infinite set of functions {g/}, 1 ~< i <
~c one function for each possible value of m. gt takes
three arguments (the learning set input xt, the learn-
ing set output y~, and the question q); g2 takes five
arguments (xt, Yl, x2, Y2, and q); and so on (see
Wolpert, 1990c). Often the {g/} are only implicitly
defined in the definition of the generalizer's algo-
rithm. This is the case with back propagation, for
example. (Strictly speaking, the {g/} of back propa-
gation are not single valued, since they depend on
the (random) initial choice of weights. This difficulty
is of little consequence however, and can be avoided
explicitly by averaging over a set of initial choices of
the weights, for example.) In other generalizers
(e.g., generalizers which work by explicitly fitting a
surface), it is possible to write down the {g/} directly.
Colloquially, one says that a generalizer's g,,,, when
provided with the argument list {x~, y~, x2, Y2 ,

x y,,,; q}, is being "taught" or "trained" with an
m-element learning set consisting of the elements {x~,
y~, x2, Y2 x,,, y,,,}, and is then "asked" the
question q, for which it "guesses" what the corre-
sponding output should be. If the generalizer returns
the appropriate y/whenever q is equal to one of the
x/in the learning set, then we say that the generalizer
reproduces the learning set.

In the scenario considered by this paper, we are
given a learning set O of m elements living in the
space R "÷~. Together with O we are given a set of
N generalizers {Gj}, where N 1> 1 (i.e., we are given
a set of N separate sequences of functions {g/}). As

an example, n could be 3, and the learning set might
consist of m elements of the form (a, b, c, output =
a + b + c), where a, b, and c are integers. "Correct"
generalization would be to guess the parent function
{output = sum of the three input components}. N
could then be four, for example, with the four Gj
being ID3, back propagation, global fitting with a
polynomial (over the n variables) of minimal order,
and a local surface-fitting technique. Since it is a
classifier (see Introduction), we know that ID3 can-
not generalize correctly for this parent function un-
less it is attached to a detrending preproces-
sor. Similar difficulties will affect back propagation
(see Wolpert, 1989). Of course, none of this can be
known with certainty to someone only provided
with the learning set O and not with the entire parent
function.

In what follows I will often be a bit free with the
symbols, and write G(O; q), for example, when what
I really mean is the output of the generalizer G's
m-th function, g,, (where m is the number of elements
in the provided learning set O), taking as argument
list the enumerated elements of O followed by the
question q. Similarly, even though it itself is made
up of components (being an n-dimensional vector),
I will often refer to the input space projection of a
point in the full input/output space R "÷t as the "in-
put component" of that point. Moreover, I will often
refer to the "nearest neighbor" of a point in a space.
What I really mean is the nearest neighbor of that
point as measured in the input space projection of
the full space. For these and all other cases, the
context should always make the meaning clear.

2.2. Partition Sets and Cross-Validation

The first step in employing stacked generalization is
choosing a set of r partitions, each of which splits O
into two (usually disjoint) sets. Label such a set of
partitions as O/j, where 1 ~< i ~< r, and j E {1, 2}.
Such a set of partitions is called a part i t ion set. For
example, for a cross-validation partition set (CVPS),
r = m, for all i 0/2 consists of a single element of
O, the corresponding O/~ consists of the rest of O,
and Oi2 ~ Oi2 for i :# j. (Since r = m , this last
requirement of distinctness of the 0/2 means that the
set of all 0/2 covers O.) One pair of such a CVPS is
illustrated in both Figs. 1 and 2. One can define a
bootstrap partition set in a similar way to a CVPS,
except that (roughly speaking) the elements 0/2 are
chosen randomly rather than in such a way as to
exhaustively cover O with no duplications. As an-
other example, for a GMDH partition set (Xiang-
dong& Zhaoxuan, 1990) r is some divisor of m, O/~
consists of m / r elements, Oil N Oil = {~ for i ~ j,
and as with the CVPS 0/2 = O - O, ~' i. (Here it
is the Oil which form a disjoint cover for O rather

Stacked Generalization 245

than the O~2.) Partition sets of this type where r <
m are particularly useful if it takes as long time to
train some of the {Gi}.

The winner-takes-all technique of cross-valida-
tion is a very straight-forward way to use a CVPS
to map a generalizer G together with a learning
set O to an estimate of the generalization error rate
of G when generalizing from O. Intuitively, it esti-
mates the generalization accuracy by seeing how well
the generalizer can guess one part of the full learning
set when taught with the rest of it. More rigorously,
it works with the CVPS by calculating the average,
over all i, of the error of G at guessing what output
corresponds to the input component of Oi2 when
taught only with the remainder of O, O,: the cross-
validation error estimate of G with respect to O is
defined by

C.V.(G, O) -= E,[G(O,; the input component of O,2)
- (the output component of O,:)]2/m

The technique of minimal cross-validation error says
that given a set of candidate generalizers {Gj} and a
learning set O, one should generalize from O with
that generalizer Gk E {(3/.} such that C. V. (Gk, O) <
C.V.(G i, O) V j # k.

For simplicity, in the rest of this paper, we will
only consider the CVPS, so any set O~2 consists of
only one element.

2.3. Stacked Generalization

Define the R "÷ ' space inhabited by the original learn-
ing set O as the "level 0 space." Any generalizer
when generalizing directly off of O in the level 0 space
is called a "level 0" generalizer, and the original
learning set O is called a "level 0" learning set. For
each of the r partitions of O, {Oil, Oa}, look at a set
of k numbers determined by (a subset of) the N {Gj}
working together with that partition. Typically these
k numbers can be things like the guesses made by
the {Gj} when taught with Oi~ and presented as a
question the input component of the element O~2
(i.e., Gj(Oit; the input component of O~2)), the input
component of the element O~2, or the vector in the
input space connecting that input component of O~2
to its nearest neighbor in O, . Take each such set of
k numbers and view it as the input component of a
point in a space R TM. The corresponding output
value of each such point is calculated from the output
component of the corresponding Oi2, perhaps along
with Gj(Oi,; the input component of O~2) for one of
the {Gj}. This space R k* ~is called the "level 1 space."
Since we have r partitions of O, we have r points in
the level 1 space. Those r points are known as the
"reduced" or the "level 1" learning set. (In Figs. 1
and 2, the level 1 learning set is L ' .)

We wish to generalize from O by operating a gen-

eralizer in the level 1 space. We can do this in many
ways. The common idea is to take a question in the
level 0 space, pass it through the transformations
which produced the input components of the level 1
learning set to get a level 1 question in the level 1
input space, and then answer that level 1 question
by generalizing from the level 1 learning set. This
level 1 guess is then transformed back into a level 0
guess. (Said transformation being determined by
how the output components of the O~2 are used to
calculate the output components of the level 1 learn-
ing set.) Any generalizing process of this form is
known as "stacked generalization." The process as
a whole can be iterated, resulting in levels p > 1
(i.e., multiple stackings). For now, we'll just be con-
cerned with 2 levels stacked generalization, as de-
scribed above.

It is important to note that many aspects of
stacked generalization are, at present, "black art."
For example, there are currently no hard and fast
rules saying what level 0 generalizers one should use,
what level 1 generalizer one should use, what k num-
bers to use to form the level 1 input space, etc. In
practice, one must usually be content to rely on prior
knowledge to make (hopefully) intelligent guesses
for how to set these details. Of course, the same use
of "black art" occurs in the rest of machine learning
as well. For example, in practice most researchers
currently rely on prior knowledge of the problem
domain to make a (hopefully) intelligent guess as to
what generalizer to use and how to configure it.

2.4. An Example of Stacked Generalization for
the Case of Multiple Generalizers

As an example of stacked generalization, assume we
have an m-element learning set O of points living in
R "÷~, a set of N generalizers {Gi}, and a question
q E R". As was mentioned before, we are restricting
ourselves to the CVPS. This partition set gives us m
sets {Oil, Oi2}, where each Oil is a different subset
o f m - 1 o f the elements of O, and O~2is the re-
maining element of O. Let k = N, and have the
k = N numbers used to construct the input com-
ponents of an element of the level 1 learning set be
the guesses made by all N of the {Gj} when taught
with a particular O~ and presented with the input
component of the corresponding O~, as a question.
(In other words, a particular point in the level 1
learning set has the N components of its input pro-
jection set to the N numbers Gj(O~t); the input com-
ponent of Oi2) (see Figs. 1, 3, and 4). Let the output
component of a point in the level 1 learning set be
given directly by the output component of the cor-
responding Om Since there are r = m partitions of
O, there are r = m elements in the level 1 learning
set, just like in the level 0 learning set. Since k =

246 D. H. Wolpert

OUTPUT

INPUT

FIGURE 3a. A schematic depiction of a level 0 learning set
and a level 0 question. Here the learning set consists of five
points, indicated by solid circles. The question is indicated
by a question mark (more precisely, the question is the input
projection of the question mark, indicated by the Intersection
of the associated dotted line and the input axis.). For this
example, the input space is one-dimensional.

N, each point in this level 1 learning set has an N-
dimensional input component. To make a guess for
the level 0 question, q, we convert it into a level 1
question. We do this in the same way we made the
level 1 learning set: we find the guess made in re-
sponse to the question q by all N of the {Gj} when
taught with (now the full) learning set O. These N
guesses give us the input coordinates of a question
in the level 1 space, and to answer that question we
simply run some generalizer off of the level 1 learning
set and ask it that level 1 question. This guess for
what level 1 output should correspond to the level 1
question is then taken as the guess made by the entire
stacked generalization process for what level 0 output
should correspond to the original level 0 question.

This procedure sounds complicated. It really
is not. As an example, take the parent function "out-
put -- sum of the three input components" men-
tioned in section 1.1. Our learning set O might consist
of the five input-output pairs (0, 0, 0; 0), (1, 0, 0;
1), (1, 2, 0; 3), (1, 1, 1; 3), (1, - 2 , 4; 3), all sampled
with no noise from the parent function. Label these

OUTPUT

I-1

FIGURE 3b. A schematic depiction of one of the pairs of the
CVPS of the level 0 learning set of Figure 3a. 6,, consists of
the four solid circles, and 0o is the fifth element of the level
0 learning set, now depicted by an open square rather than
a solid circle. The other four pairs making up the CVPS sim-
ply change which element of the level 0 learning set is the
square.

OUTPUT

O

INPUT 2

INPUT I

FIGURE 3c. A schematic depiction of one of the elements
of a level 1 learning set. Here we determine the (two) level 1
inputs by running two level 0 generalizers on a level 0 {learn-
ing set, question} pair. For the CVFS indicated in Figure 3b,
both of these generalizers are taught with the solid circles,
and are then asked to guess what level 0 output should
correspond to the input value of the square. These two
guesses form the two input components of the solid circle
in this figure, indicated by the two dotted lines. The output
of this level 1 space is the same as the output of the level 0
space (i.e., the output value of the single circle indicated in
this figure Is identical to the output value of the square in
Figure 3b).

five input-output pairs as O,2 through Os2, with
O,, - O - Oi2 (so for example O21 consists of the
four pairs {(0, 0, 0, 0), (1, 2, 0; 3), (1, 1 1; 3), (1,
- 2 , 4; 3)}. We have two level 0 generalizers, Gt and
G2, and a single level 1 generalizer, F. The level 1
learning set L' is given by the five input-output pairs
(G,(O~,; input components of O~2), G2(O~,; input
components of On); output component of 0/2) given

OUTPUT

e

l ? • {

iNPUT l

FIGURE 3d. The level 1 learning set, made from the pairs of
the level 0 CVPS, are indicated by the solid circles in this
figure. (For clarity, only three of the five points of the level
1 learning set are shown.) Once this learning set Is con-
structed, both level 0 generalizers are then taught with the
full level 0 learning set and asked what level 0 output they
think should correspond to the level 0 question. These two
guesses determine the level 1 question, Indicated here by
(the input projection of) a question mark. A generalizer is
now trained with the level 1 learning set and then makes a
guess for this level I question. This guess serves as the full
system's guess for what level 0 output should correspond
to the level 0 question, given the level 0 learning set.

Stacked Generalization 247

I) CREATING L'

Level I/
Learning set U, Contains r ele-
ments, o n e for each partition in
the level 0 pal~ilion set.

Level 0/
Learning set 8. Partition set

8ij. Generalizers IGp}. Gl(8i1; in(Oi2)) G2(0il; in(0i2)) ... ; out(0i2)

2) GUESSING Final euess

T
G'(L'; q') I/ Learning set L', Generalizer

G'. Question q'.

Level 01 ~ ~ "
Learning set 8. Genernlizers

[Gpl. t,/uesdonq.- Gl(O;q) G2(O;q) ... ;

FIGURE 4. A styl ized depiction of the two stages Involved in the implementation of stacked generalization described in Section
2.4. In the first stage the level 1 learning set L' is created from the level 0 parti t ion set 81j and the set of level 0 generalizers
{Gp}. In the second stage the exact same architecture used to create L' is used to create a level 1 question from a level 0
question. After this the final guess is found by training the level 1 generalizer on L' and then asking it the new-found level 1
question. Note that this entire procedure is twice parallelizable; once over the partiUons, and once over the level 0 generallzers.

by the five possible values of i. (This level 1 space
has two dimensions of input and one of output.) So
for example the member of the level 1 learning set
corresponding to i = 1 has output component 0 and
input component Gl(O~l; (0, 0, 0)), G2(Ou; (0, 0,
0)). Now we are given a level 0 question (xl, x2, x3).
We answer it with the guess F(L ' ; (G~(O; (x~, x2,
x3)), G2(O; i(x~, x2, x3)))) (i.e., we answer it by train-
ing F on L' and then asking it the question given by
the guesses of the two level 0 generalizers which were
themselves trained on all of O and asked the ques-
tion q).

The guess made by this implementation of stacked
generalization is determined by combining the
guesses of the original N {G/}. Ho w they are com-
bined depends on the level 1 generalizer used. For
example, consider the following level 1 generalizer:
"Fit the (level 1) learning set with a single global
hyperplane of the form {output = value of input
dimension t}. There are k such global hyperplane fits
for the k possible values of t; choose the hyperplane
fit with the smallest RMS Euclidean error for fitting
the level 1 learning set." In the language of pattern
recognition, this generalizer is the rule "find which
single feature (i.e., which input space component)
has the greatest correlation with the correct answer,
and guess according to it." This level 1 generalizer
results in a winner-takes-all strategy for using the

{Gj}. It makes the determination of which of the {Gj}
to use by finding the G/ with the minimal RMS
error for predicting part of the level 0 learning set
from the rest. This error is calculated using the cross-
validation partition set. In fact, a moment's thought
shows that stacked generalization with this simple-
minded level 1 generalizer is the exact same gener-
alizing process as the technique of minimal cross-
validation! As was mentioned in the introduction,
cross-validation is seen to be just a (relatively un-
interesting) special case of stacked generalization,
corresponding to an extraordinarily dumb level 1
generalizer. 3

3 In addition to stacked generalization, there are other ways
of embedding the central idea of cross-validation in a more so-
phisticated framework. One such is to not use the cross-validation
error simply as a means for choosing amongst a set of generalizers.
Rather one constructs a generalizer from scratch, requiring it to
have zero cross-validation error. (To make the construction
unique, one must impose other constraints as well--see (Wolpert,
1990d).) Instead of coming up with a set of generalizers and then
observing their behavior, one takes the more enlightened ap-
proach of specifying the desired behavior first, and then solving
the inverse problem of calculating the generalizer with that desired
behavior. This approach is called "self-guessing." It is similar in
spirit to regularization theory, except that here (loosely speaking)
the regularization is being done over the space of generalizers as
opposed to the space of input-output functions.

248 D. H. Wolpert

As another naive example, the level 1 generalizer
could be independent of the level 1 learning set:
"make a guess for a (level 1) question by averaging
all the k components of that question." Another
extraordinarily dumb level 1 generalizer. Yet the
guesses it makes are the same as those made by
perhaps the most common currently used scheme
(second to winner-takes-all schemes) for combining
generalizers; stacked generalization with this level 1
generalizer is exactly equivalent to simply averaging
the guesses made by all N of the {Gj}. A (marginally)
more sophisticated way of combining generalizers is
to form a weighted average of the guesses of the
{Gj}. This is equivalent to having the level 1 gener-
alizer be a scheme to fit the level 1 learning set with
a single global hyperplane.

We can view the various commonly used schemes
for combining generalizers as simply special cases of
stacked generalization. In all these schemes, one is
implicitly confronted with a level 1 learning set and
must decide how to generalize from it. Yet the prob-
lem of how to generalize from the level 1 learning
set is just a normal generalization problem, in prin-
ciple no different from any other. Therefore, just as
with any other generalization problem, it makes no
sense to use "dumb" generalizers to generalize from
the level 1 learning set. Yet one very noticeable fea-
ture of these commonly used schemes for combining
(level 0) generalizers is precisely the lack of sophis-
tication of their level 1 generalizers. Therefore, just
as with any other generalization problem, one would
expect improved performance--perhaps extremely
improved performance--if these dumb level 1 gen-
eralizers were replaced with more sophisticated
generalizers.

2.5. An Example of Stacked Generalization for
the Case of One Generalizer

There is no a priori reason why the k numbers used
to make the level 1 input space have to all be the
guesses of a set of generalizers. Nor is there any a
priori reason why the output components of the level
1 learning set have to be given directly by the output
components of the 0,-2. This can be illustrated with
an example of how to use stacked generalization
when the set {G~} consists of a single element (i.e.,
by an example of how to use stacked generalization
to improve the behavior of a single generalizer, as
opposed to using it as a means of combining a set of
generalizers). This example is illustrated in Figure 2.
(Another similar example is illustrated in Figure 5).

Again use the CVPS, so r = m. The level 0 input
space has dimension n; let k = 2n. The 2n numbers
defining the level 1 input space are the n coordinates
of a level 0 question (like the input components of
O~2) together with the n input coordinates of the

vector connecting the nearest neighbor of that ques-
tion amongst the level 0 learning set (like the nearest
neighbor amongst the Oi,) to the question itself. Our
single generalizer G does not in any way contribute
to the level 1 input space values. Rather G comes
in, indirectly, in the level 1 space outputs; the output
component of a point in the level 1 space is the error
(or estimate thereof, as the case might be) of G when
trying to guess what output corresponds to the as-
sociated level 0 question. For example, in forming
the level 1 learning set we set the output value cor-
responding to a particular partition {Oil, O~2} to be
{G(Oi~; input component of Oi2) - (the output com-
ponent of Oi2)}. To make a guess as to what output
should correspond to the question q, after we have
constructed the level 1 learning set we train G with
all of O, ask it q, and store the resultant guess; call
it y. Now we feed q, together with the level 0 input
space vector connecting q to its nearest neighbor
amongst O, into the level 1 space as level 1 input
coordinates. Generalizing in this level 1 space, we
get a guess for what level 1 output should correspond
to this level 1 question (i.e., we get an estimate for
the difference between y and the correct guess). Now
subtract half of this error estimate from y to get the

Output

R

q0 Input

= Parent function

= Element of level 0 learning set

Level 0 generalizer's guessing curve (The level 0

generalizer is a connect.the-dots surface fitter.)

q0 = Level 0 question

FIGURE 5a. Figures 5(a) through 5(c) are a geometric de-
piction of how stacked generalization attempts to improve
the guessing of a single generalizer. The figures assume the
same stacked generalization architecture as in Figure 2, ex-
cept that the level 1 Inputs are one-dimensional, consisting
solely of the level 0 input. Figure 5(a) illustrates a parent
function and (part of) a learning set made up of some (noise-
free) samples of that parent function. (Other elements of the
learning set exist outside the range of this figure.) The level
0 generalizer is a simple connect-the-dots generalizer; its
guessing for the learning set is explicitly depicted. A partic-
ular question is indicated by qo. Our task is to estimate and
then correct for the error of the level 0 generalizer in guessing
what output should correspond to q0. This is achieved with
a second, level 1 generalizer.

Stacked Generalization 249

Output / /
~ ~ GUESSING ERROR

ql Input

parent function

left.ln element of level 0 learning set

len-out element of level O learning set

ql = input component of left-out point; a
level I question. GUESSING ERROR forms
the corresponding level i output.

level 0 generalizer's guessing curve

FIGURE 5b. (See Figure 5(a)). To perform the stacked gen-
eralization, we need to first form the level 1 learning set. This
is done via a CVPS of the original level 0 learning set. One
partition pair from this CVPS is illustrated in this figure. The
point in the learning set corresponding to the hatched circle
is e~; the level 0 generalizer is trained on all other points of
the level 0 learning set, and then its error at guessing what
output corresponds to the input component of 0~ (i.e., cor-
responds to qt) is tabulated. This error is the output of a
point in the level 1 learning set; the corresponding level 1
input is the same as the level 0 input, qt.

GUESSING ERROR (Level I output)

/ % =

Level 1 input
(equals level 0 input)

level I question; here identical to
the level 0 question, qo (see figure 5(a)).

element of level I learning set

FIGURE 5c. (See Figs. 5(a) and 5(b)). This figure depicts
some elements of the level 1 learning set, which was made
according to the algorithm described In Figure 5(b). The full
stacked generalization scheme works by first using a gen-
eralizer to guess what level 1 output should correspond to
the level 1 question (which is identical to the level 0 ques-
tion), given the Input-output pairs of the level 1 learning set.
After this guess is found, one finds the level 0 generalizer's
guess for what output corresponds to the level 0 question,
and subtracts from this level 0 guess the level 1 guess mul-
tiplied by .5 (just to be conservative). This gives our final
guess for what output corresponds to the level 0 Input. In
this particular example, since the errors of the level 0 gen-
eralizer are so strongly correlated with the level 0 question,
for any reasonable level 1 generalizer the error of the full
stacked generalization scheme will be significantly lower
than the error of the level 0 generalizer used straight.

number which is our final guess as to what output
should correspond to the original question q.

In this procedure we multiply by the constant one
half just to be conservative. Note that this multipli-
cative constant gives us a knob determining how
much we are using stacked generalization. When the
constant equals 0, our guessing is equivalent to using
the level 0 generalizer straight. As the value of this
constant is increased, our guessing becomes more
and more stacked-generalization-based.

Intuitively, this implementation of stacked gen-
eralization with a single generalizer is a means of
estimating the actual error (not just the average value
of the errors) of the provided generalizer when pre-
sented with a particular question and a particular
learning set. It works by first seeing how the gen-
eralizer errs when taught with only part of the learn-
ing set and asked a question in the remainder of the
learning set; this information then serves as the level
1 learning set, and the level 1 generalizer generalizes
from this information to make an estimate for the
error when the original level 0 generalizer is taught
with the entire level 0 learning set. This error esti-
mate (or more usually a fraction of it) is then sub-
tracted from the level 0 generalizer's guess to arrive
at an improved guess.

The information we send into the level 1 input
space determines how our error estimates are al-
lowed to vary. In the example given above, in ad-
dition to depending strongly on the level 0 question,
we are assuming that the errors of the level 0 gen-
eralizer are strongly dependent on the nearest neigh-
bor of that question amongst the elements of the
learning set. The rationale is that varying the nearest
neighbor of the question often has a pronounced
affect on the generalization accuracy of the level 0
generalizer, especially if that level 0 generalizer is
something like a local surface-fitter.

It's interesting to note that a special case of single
generalizer stacked generalization is exactly equiv-
alent to running the level 1 generalizer by itself. Have
the level 1 input values be simply the level 0 question
(or input component of 0i_,, as the case might be).
Furthermore, have the level 1 outputs be the level 0
outputs (i.e., have the transformation taking the out-
put component of the Oi2 to the output components
of the level 1 space be the identity mapping). Note
that no level 0 generalizer is being used. In fact, this
entire stacked generalizer structure is exactly equiv-
alent to running the level 1 generalizer by itself
directly on the level 0 learning set and level 0 ques-
tion. Therefore, just as stacked generalization corre-
sponds to an extension of cross-validation when one
has multiple generalizers, so when one has only a
single generalizer stacked generalization corresponds
to an extension of using that generalizer directly by
itself.

250 D. H. Wolpert

3. EXPERIMENTAL TESTS OF
STACKED GENERALIZATION

This section reports the results of two numerical ex-
periments which indicate that stacked generalization
does indeed improve generalization accuracy. These
experiments are relatively controlled, " toy" prob-
lems. The idea is to use them as pedagogical and
heuristic tools, much like the toy problems used in
(R u m e l h a r t & McCie l land , 1986). It should be
noted, however, that there appears to be little (if
any) degradation of performance of stacked gener-
alization when it is instead applied to messy, real-
world problems. For example, Gustafson, Little, and
Simon (1990) have reported that (what amounts to)
stacked generalization beats back-propagation for
some hydrodynamics problems. 4 Similarly, a number
of researchers have reported on the efficacy of simply
averaging a set of generalizers, for example for as-
pects of the problem of predicting protein structure
(Schulz et al., 1974). Xiandong has reported on the
efficacy of (what amounts to) using stacked gener-
alization with a variant of a G M D H partition set
together and a radial basis function generalizer for
t ime-series predic t ion (Xiangdong & Zhaoxuan ,
1990). 5 Finally, work in progress with Alan Lapedes
and Rob Farber suggests that using stacked gener-
alization to combine ID3, perceptrons, and the au-

4 Although Gustafson et al. (1990) do not view it in those
terms, their scheme is essentially the same as cross-validation,
except that instead of finding a single best generalizer, they are
finding the best (restricted) linear combination of generalizers.
using a CVPS to determine that combination. In the language of
stacked generalization, their scheme is using a CVPS along with
a level 1 input space consisting of the outputs of the level 0 gen-
eralizers. The level 1 output space is the correct outputs from the
level 0 space, and the level 1 generalizer is a restricted global
hyperplane fitter. (The level 0 generalizers in their scheme are
variations of local hyperplane fitters.) The difference between this
scheme and straight cross-validation is that the restrictions Gus-
tafson et al. (1990) imposes on the level 1 generalizer are more
lax. They too generalize in the level 1 space by fitting with a global
hyperplane, but they allows arbitrary hyperplanes of the form
E a,x,, where the x, are the level 1 input space coordinates and
the a, are arbitrary real-valued constants restricted so that 53 a, =
1. (In contrast, cross-validation adds the extra restriction that all
but one of the a, must equal 0,)

s As implemented by e Xiangdong, GMDH can be viewed as
using the following partition set rather than the so-called "GMDH
partition set": 0,~ ranges over all single pairs from 0, just as in a
CVPS, but 0,~ = 0 for all i. There are then p level 0 generalizers,
all of which are identical except that they use nonoverlapping
subsets of 0 to train themselves. (p is usually restricted to be a
divisor of m.) For example, the first level 0 generalizer might be
a surface-fitter which only fits an i/o surface to the group of the
first rn/p elements of 0, the second level 0 generalizer is the same
surface fitter but fits an i/o surface to the second group of m/p
elements of 0, and so on. The GMDH scheme of Xiangdong
consists of feeding those p level 0 generalizers into a level 1 space
and generalizing there.

thor 's metric-based H E R B I E (Wolpert, 1990b) for
the problem of predicting splice junctions in D N A
sequences gives accuracy better than any of the tech-
niques by itself (i.e., preliminary evidence indi-
cates that this implementat ion of stacked generaliza-
tion is the best known generalization method for this
problem).

3.1. Experiment One

The simpler of the two numerical experiments in-
volved using stacked generalization to improve the
performance of a single generalizer. The level 0 input
space for this experiment was one-dimensional . The
problem was explicitly one of surface-fitting; the par-
ent funct ions were s imple h igh-school -math- type
functions, and the level 0 generalizer was "linearly
connect the dots of the learning set to make an input-
output surface which then serves as a guess for the
parent function" (i.e., the local linear technique of
Farmer and Sidorowich (1988). (See Figure 5 for an
illustration of this level 0 generalizer).

In this experiment the stacked generalization ar-
chitecture was exactly the same as in the example at
the end of Section 2 on how to augment the per-
formance of a single generalizer (see Figure 2). n
equals 1 for this problem, so the level 1 input space
was 2-dimensional. The level 1 generalizer was
the metric-based H E R B I E described in (Wolpert,
1990b; Wolpert , 1990c). It works by returning a nor-
malized weighted sum of the outputs of the p nearest
neighbors of the question amongst the learning set.
Here p was 3, and the weighting factor for each of
the 3 nearest neighbors was the reciprocal of the
distance between that neighbor and the question.
"Normal iza t ion" means that the weighted sum
was divided by the sum of the weighting factors:

Z ~ guess = { ~ yi /d(q, xi)}/{Z3:~ 1/d(q , xi)}, where q
is the question, xt, x2, and x3 are the input compo-
nents of the three nearest neighbors of q in the learn-
ing set, y~, Y2, and Y3 are the corresponding outputs,
and d(. , .) is a metric, here taken to be the Euclidean
metric. (When the input space is symbolic, it is con-
ventional to use a Hamming metric rather than a
Euclidean metric (see Wolpert , 1990b). This metric-
based H E R B I E is one of the simplest generalizers
there are. 6 In addition, along with (for example)
Farmer ' s local linear technique, metric-based H E R -
BIEs necessarily always reproduce their learning set,
exactly (see Wolpert , 1990b and Wolpert , 1990c).
The parameters of this use of stacked generalization
(e.g., .5, 3) were chosen in an ad hoc manner ; pre-
sumably cross-validation could be used to get bet ter
values.

In the first phase of the exper iment stacked gen-
eralization was run 1,000 times. Each time a new 3rd
order polynomial was created, all four of whose coef-

S t a c k e d Genera l i za t ion 251

ficients were chosen randomly from the interval
[- 2 . 0 , 2.0]. (Here and elsewhere " r a n d o m " means
i.i.d, with a fiat sampling distribution.) For each such
polynomial parent function a 100-point learning set
was chosen randomly, and then a separate 100-point
testing set of input space values was chosen ran-
domly. Both sets had their input space values re-
stricted to the interval [- 1 0 . 0 , 10.0]. The learning
set was then used to " t ra in" the stacked generali-
zation structure described above, and the errors
when using that structure to guess the outputs of the
elements of the testing set were recorded and com-
pared to the errors of the level 0 generalizer run by
itself with no level-1 post-processing, The average of
the difference {(square of the error for the level 0
generalizer run by itself) - (square of the error for
the stacked generalizer)} equalled 81.49. The esti-
mated error in this average was --- 10.34 (i.e., stacked
generalization improved the generalization with a
confidence of 8 standard deviations).

The magnitudes of the guessing errors, both for
the level 0 generalizer run straight and for the stacked
generalization structure, ranged over many orders of
magnitude, so the number "81.49" is not particularly
meaningful. Ratios of error magnitudes can be mis-
leading, but they do have the advantage that (unlike
simple differences of error magnitudes) they are not
badly skewed by such logarithmically broad distri-
butions. The average of the ratio {(square of the error
for the level 0 generalizer run by itself)/(square of
the error for the stacked generalizer)} equalled 1.929.

More sophisticated versions of metric-based HERBIEs re-
place a prefixed metric with something less restrictive. For ex-
ample, in the use of metric-based HERBIEs reported in (Wolpert,
1990b), the input space was 7 dimensional, and each of the 7
coordinates of any input value were scaled by a distinct weighting
factor, p,, 1 <- i <- 7, before-the conventional metric was applied.
The weighting vector p, was determined by the learning set itself
via cross-validation. A more general scheme would be to use a
weighting matrix rather than a weighting vector. In this scheme,
one multiplies all input space vectors by the weighting matrix
before applying the conventional metric. (Use of a weighting vec-
tor is a special case of this scheme where the weighting matrix is
diagonal.) Again, in practice something like cross-validation could
be used to find the matrix. (Since the space of possible matrices
is so large howver, rather than the trial and error approach used
in (Wolpert, 1990b) one would probably want to employ some-
thing like gradient descent in the space of cross-validation error
to find the "'optimal" weighting matrix.) Premultiplying by a
weighting matrix is equivalent to linearly transforming the input
space before doing the generalizing. Such a transformation allows
cross-talk amongst the various input space coordinates to occur
in the determination of distances bewteen input space vectors.
This jump from use of a weighting vector to use of a weighting
matrix in a metric-based HERBIE is loosely equivalent to the
jump from using a perceptron (with its vector of synaptic weights)
to using a feedforward neural net with hidden layers (where one
has matrices of synaptic weights). After all, the mapping from the
input layer to the hidden layer in a neural net is nothing more
than a linear transformation of the original input vectors.

The estimated error in this average was +.0243; us-
ing stacked generalization improved the generaliza-
tion by a factor of 2, on average.

The same problem was first investigated for parent
functions which were polynomials only of order 2.
The level 1 input space consisted of the two numbers
a a n d f l , where a = (q - x0 , fl = (q - x 2) , q i s
the question, and x~ and x2 are the two elements of
the learning set used to make the local linear guess
(i.e., they are the nearest neighbor of q, and the next
nearest neighbor which lives on the opposite side of
q from that first nearest neighbor.) For this scenario
the average of the ratio of the error magnitudes
ranged up to 50 (!), depending on the precise pa-
rameters used.

It is not hard to understand this behavior. For
polynomials of order two it turns out that the error
of the local linear technique is independent of the
question. In fact, up to an overall proportionality
constant, it's given exactly by ct[3. For this scenario,
the level 1 generalizer only has to learn the simple
surface {output -- a constant times the product of
the 2 input coordinates} (i.e., a paraboioid, a two-
dimensional version of the original parent surface).
Let the cardinality of the level 0 learning set be m,
and let the range of the input values in that learning
set be z. The density in the input space of the ele-
ments of the level 0 learning set is - m / z . This means
that the values of a and fl are - z / m . Since there are
m such values in the level 1 learning set, the density
in the input space of the elements of the level 1
learning set - m / (z / m) 2 = (m 3) / (z 2) ~ (m 2) / z (under
the assumption m ~ z). Since these level 1 points lie
on the two-dimensional version of the level 0 parent
surface, the stacking of the generalizer has effectively
allowed us to run the original generalizer over a
learning set chosen from the original surface, but
with a density m times that of the original level 0
learning set. We have a "multiplier effect ."

As another way of understanding the exceptional
behavior for order two polynomial parent surfaces,
let the average output space magnitude of the points
in the level 0 learning set be s, and let rs be the
average error of the level 0 generalizer run straight.
r measures the efficacy of the generalizer, and will
in general be below 1, fairly close to 0. The average
output space magnitude of the points in the level 1
learning set is rs. Since these points lie on the " s ame"
surface as the points of the level 0 learning set, if the
same generalizer is used we would expect an average
error of the guesses in the level 1 space to be - r x
(rs) = r2s < < rs. Just as in the argument of the
preceding paragraph, this output space argument
says that for polynomials of order two, using a level
1 generalizer with inputs a and fl results in a "mul-
tiplier effect" diminishing the average guessing error
polynomially.

252 D. H. Wolpert

In addition to polynomials, simple transcendental
parent functions were also investigated. The level 1
input space was again two-dimensional, the input
coordinates were again q and q - xl, and the error
estimate made by the level 1 generalizer was again
multiplied by .5. Random constants were again cho-
sen from [-2 .0 , 2.0], the level 0 inputs were again
chosen from [- 10.0, 10.0], and again 1,000 runs of
random 100-point learning sets and random 100-
point testing sets were investigated. The same level
0 and level 1 generalizers were used as in the poly-
nomial tests. The parent functions were a sum of two
sine waves and two exponential functions. The am-
plitudes of all four functions were determined by the
random constants, as were the phases of the two sine
waves (thereby introducing cosines) and the fre-
quencies of the two exponentials. The frequencies
of the two sine waves were .1 and .2, and the sine
function used interpreted its arguments as being
in radians.

The average of the difference {(square of the error
for the level 0 generalizer run by itself) - (square of
the error for the stacked generalizer)} equalled .0078.
The estimated error in this average was + / - .0011
(i.e., stacked generalization again improved the gen-
eralization with a confidence of 8 standard devia-
tions). The average of the ratio {(square of the error
for the level 0 generalizer run by itself)/(square of
the error for stacked generalizer)} equalled 2.022.
The error in this average was ---.0318, using stacked
generalization again improved the generalization by
a factor of 2, on average.

These results are not intended to constitute the
definitive investigation of how to use stacked gen-
eralization to improve the accuracy of the local linear
generalizing technique. Many variations of the
schemes outlined here could be investigated (involv-
ing, for example, different level 1 generalizers, dif-
ferent values of parameters, different mappings from
partitions to a level 1 space, different dimensional-
ities of the level 1 input space, etc.) Rather these
results are simply intended to indicate that stacked
generalization does indeed improve the generaliza-
tion of the local linear technique, at least for the
smooth and nonvolatile parent functions investigated
here.

Nonetheless, it is worth commenting on how one
might choose amongst the variations of this scheme
in an algorithmic manner. One obvious way to
do this would be to use cross-validation. If the
cross-validation is run on the level 1 learning set,
then only the parameters dealing with the level 1
generalizer are being varied. The parameters dealing
with how to construct the level 1 space (for example)
are fixed. Under this scheme we are trying to esti-
mate generalization accuracy in the level 1 space and
then use that information to improve the entire struc-

ture's generalization of the level 0 learning set. This
scheme is equivalent to simply introducing another
level (level 2) to the stacking of the generalizers.
There is another way to run the cross-validation how-
ever; treat the entire stacked generalization process
as a generalizer of the level 0 learning set, with a
different generalizer corresponding to each different
set of parameter values. (Under this scheme we are
examining all parameters, including, for example,
those dealing with how to map from the level 0 space
to the level 1 space.) Now run cross-validation over
that set of generalizers. This way we are using the
cross-validation to directly estimate generalization
accuracy in the level 0 space, which is, after all, what
we're ultimately interested in. With this second
scheme, the output information going into the level
2 learning set is coming from the level 0 learning set,
not the level 1 learning set.

3.2. Experiment Two

The other numerical experiment was based on the
NETtalk "reading aloud" problem. The parent func-
tion for this problem has seven (suitably encoded)
letters as input. The output of the parent function is
the phoneme that would be voiced by an English
speaker upon encountering the middle letter if all
seven letters had occurred in the midst of some text
which the speaker was reading aloud (see Carterette
& Jones, 1974; Sejnowski & Rosenberg, 1988; Stan-
fill & Waltz, 1986, Wolpert, 1990b).) The data set
used for the experiment reported here was standard
Carterette and Jones (1974), modified (as in Wol-
pert, 1990b) to force consistency amongst the several
speakers recorded.

In both (Wolpert, 1990b) and (Sejnowski & Ro-
senberg, 1988) generalizers never guess directly from
7-letter fields to phonemes. Rather each possible
phoneme is decomposed into a vector in a 21-di-
mensional space (the components of which relate to
the physical process of speech). Therefore NETtalk,
for example, is a neural net which takes (a suitable
encoding of) a 7-letter input field as its input, and
guesses a vector in a 21-dimensional space. This vec-
tor guess is then converted into a phoneme guess by
finding the legal phoneme vector making the smallest
angle (in the 21-dimensional space) with the guessed
vector. To use metric-based HERBIEs for this prob-
lem (as in Wolpert, 1990b), 21 such HERBIEs have
to be used, one for each component of the phoneme
vector space. As with the output neurons of NET-
talk, the guesses of these 21 metric-based HERBIEs
are then passed through a post-processor which com-
bines them to form a 21-dimensional guess, which in
turn specifies a phoneme guess. Unless otherwise
specified, in the rest of this section, whenever the
term "metric-based HERBIE" is used, what is really

Stacked Generalization 253

meant is a set of 21 such HERBIEs combining in the
manner discussed here to guess a legal phoneme.

Several separate generalizers were combined in
the exact same manner as in the example in Section
2. Each such level 0 generalizer was a metric-based
HERBIE, where four nearest neighbors were used.
Each of these level 0 generalizers looked exclusively
at a different one of the seven input letter slots (i.e.,
for each of them instead of using the full Hamming
metric d(p, q) = ET=t (1 - ~(Pi, qi)), the metric d(p,
q) = 1 - ~(Pk, qk)) for some fixed value of k was
used. The level 0 generalizers differed from each
other in which letter slot they looked at (i.e., they
used different k's). (Effectively, this means that each
of the level 0 generalizers had a different one-di-
mensional input space rather than a seven-dimen-
sional one, since only variations in the k-th slot had
any effect on the guessing of the corresponding gen-
eralizer.)

Three level 0 generalizers were used; the first
looked exclusively at the 3rd letter slot of the seven
letter input field, the second looked exclusively at
the 4th letter slot, and the third looked exclusively
at the 5th letter slot. As in the example in Section
2, the CVPS was used, the guesses of the level 0
generalizers formed the inputs of the level 1 space,
and the outputs of the level 0 and level 1 spaces were
identical (i.e., the level 1 output space was not an
error space), Although it might help the level 1 gen-
eralizer if the 21-dimensional output vectors of the
level 0 generalizer were fed into the level 1 input
space, for simplicity the full level 0 generalizers were
used instead and a single integer representing the
closest phoneme to the 21-dimensional vector was
fed into the level 1 input space. In other words, level
1 inputs were symbolic and not real-valued. The level
1 generalizer was a metric-based HERBIE using a
full Hamming metric over the 3-dimensional level 1
input space. (As usual, there were in fact 21 such
HERBIEs, making a 21-dimensional guess which in
turn specified the phoneme guessed by the entire
stacked generalizer.)

The (level 0) learning set was made by looking
at successive 7-letter windows of the first 1024
words of Carterette and Jones (i.e., it consisted of
(1024 x 5) - 6 = 5114 elements). The testing set
was constructed from the successive 7-1etter windows
of the next 439 words of Carterette and Jones (i.e.,
it consisted of (439 × 5) - 6 = 2189 elements). The
three level 0 generalizers achieved a total of 507,
1520, and 540 correct guesses, respectively, on the
testing set. Since each guess was either correct or
incorrect, these numbers suffice to determine exactly
the expected error in the associated estimates of the
average guessing accuracies: generalizer 1 had an
average generalizing accuracy of 23% --+ .90%, gen-
eralizer 2 had an average generalizing accuracy of

69% +- .98%, and generalizer 3 had an average ac-
curacy of 25% - .92%. As one would expect, gen-
eralizer 2, looking at the middle letter of the input
field, guesses best what phoneme should correspond
to that middle letter.

The stacked generalizer got 1926 correct, for an
average accuracy of 88% - .69%. Cross-validation
(i.e., a level 1 generalizer which worked by globally
fitting a surface of the form {level 1 output = one
of the level 1 inputs}), would have chosen generalizer
2. Therefore the improvement over cross-validation
which resulted from using a better level 1 generalizer
was approximately 20 (of generalizer 2's) standard
deviations. As in the surface-fitting experiment pre-
sented earlier, presumably one could construct a
stacked generalizer for the text-to-phoneme problem
which performed better than the one presented here.
This would be done by varying the parameters of the
stacked generalizer, perhaps using a different level
1 generalizer, etc.

The purpose of this text-to-phoneme experiment
wasn't to beat the performance (reported in Wolpert,
1990b) of a metric-based HERBIE having access to
all 7 input letters, nor even to beat the performance
of back-propagation (i.e., NETtalk) on this data.
Rather it was to test stacked generalization, and in
particular to test whether stacked generalization can
be used to combine separate pieces of incomplete
input information. Since some of the letter slots are
more important than others for determining the cor-
rect phoneme output, this experiment demonstrates
stacked generalization's ability to distinguish be-
tween (and properly exploit) relevant and (rela-
tively) irrelevant level 0 input information.

4. DISCUSSION OF STACKED
GENERALIZATION

There are a number of subtle issues involved with
stacked generalization. This section is an introduc-
tion to some of them. First two potential shortcom-
ings of stacked generalization are addressed, then a
heuristic discussion on the behavior of stacked gen-
eralization is presented, and then extensions and
variations of the technique are discussed.

4.1. Multi-valuedness and Learning
Set Reproduction

Consider the first example given in Section 2 of how
to use stacked generalization, the one involving a set
of several {Gj}. The whole process outlined in that
example is itself a generalizer; it takes (level 0) learn-
ing sets and (level 0) questions and maps them to
guesses. Therefore it is sensible to ask how the whole
process agrees with the theoretical properties which
are often required of individual level 0 generalizers.

254 D. H. Wolpert

One of the first things one notices is that it is
possible for the level 1 learning set to be multi-valued
(i.e., the level 1 learning set might contain a pair of
points with identical input components but different
output components). This is because there might be
two (or more) partitions in the partition set which
result in the same guesses by all of the {Gj} even
though they have different O~2's. In practice this oc-
curs very rarely, especially if the data takes on a
continuum of values. Moreover, unless the level 1
generalizer tries so hard to reproduce its learning set
that it can not deal gracefully with such multi-
valuedness, this multi-valuedness is not, of itself, a
reason for concern. And even if the level 1 gener-
alizer does have a marked lack of grace under such
conditions, if the level 1 input space is enlarged to
include the level 0 question (or input space projec-
tion of O~2, as the case might be), then the level 1
learning set will now be single-valued and no prob-
lems will arise.

Another example of a peculiar property of stacked
generalization concerns the issue of reproducing the
level 0 learning set. Most conventional generalizers
either always reproduce their learning set or strive
to do so. However this is not necessarily the case
with the whole process of stacked generalization
(viewed as a generalizer of the level 0 learning set),
regardless of whether or not the constituent level 0
and level 1 generalizers necessarily reproduce their
learning sets. This lack of reproducing the learning
set might not be a problem. For example, when one
has noisy data, exact reproduction of the learning
set is rarely desirable. (Indeed, the behavior of a
stacked generalizer when one has large learning
sets can perhaps be used as means of determin-
ing whether or not one's data is noisy.) And for
non-noisy data, it should often be the case that if the
learning set is large enough, then the learning set is
reproduced, to a good approximation.

Nonetheless, there are many cases where one
would like to enforce exact reproduction of the learn-
ing set. There are several ways to achieve this. The
most obvious is to simply place a filter on the ques-
tions being fed to the stacked generalizer: if a level
0 question already exists in the (level 0) learning set,
bypass the generalizers and answer that question di-
rectly from the learning set. (After all, the purpose
of stacked generalization is to improve guessing for
questions outside of the learning set, not to pro-
vide a complicated means of implementing the
look-up-table "if the question is in the input projec-
tion of the learning set, guess the corresponding out-
put.")

A more elegant scheme has been devised by Gus-
tafson et ai. (1990): require that the level 1 surface
guessed by the level 1 generalizer contains the line

ae, where a runs over the reals and e is a diagonal
vector, that is a vector in R k÷l all k + 1 of whose
coordinate projections are identical and nonzero
(k being the dimensionality of the level 1 input
space). Under this scheme, so long as the level 0
generalizers all reproduce the level 0 learning set,
then so will the entire stacked generalizer. The rea-
son is that if the level 0 question is contained in the
level 0 learning set, then all the level 0 generalizers
will make the same guess (namely the output com-
ponent of the corresponding element of the level 0
learning set), and then this level 1 generalizer will
also make that guess.

There are other ways to ensure reproduction of
the learning set which do not restrict the level 1 gen-
eralizer. For example, one could, so to speak, teach
the level 1 generalizer to reproduce the level 0 learn-
ing set. To do this, for every set Oil do not simply
create the single element of the level 1 learning set
corresponding to Oi2 = O - Oil. Rather for each
Oi~ create m points in the level 1 space, one for all
m possible values of O~2 (i.e., allow Oi2 to range over
all O rather than just over O - O~t). Modulo any
issues of multi-valuedness of the level 1 learning set,
so long as the individual level 0 and level 1 gener-
alizers reproduce their learning sets, then under this
scheme so will the entire stacked generalizer.

There are many other criteria one might require
of a generalizer in addition to reproduction of the
learning set. For example, one might require that the
generalizer be invariant under Euclidean symmetry
operations in the level 0 space R n*~ (see Wolpert,
1990c). In practice, although many of the general-
izers commonly used reproduce learning sets, few
meet these additional generalization criteria (despite
the reasonableness of these criteria). The result is
that modifying stacked generalization to necessarily
obey these criteria is a nontrivial exercise, since in
practice the constituent generalizers will often violate
them. A full discussion of this and related issues
concerning stacked generalization and generalization
criteria is beyond the scope of this paper.

4.2. Heuristics Concerning the Behavior of
Stacked Generalization

This subsection is a cursory heuristic examination of
those properties of the individual level 0 and level 1
generalizers which have particularly pronounced ef-
fects on the efficacy of stacked generalization.

Many generalizers are explicitly local, meaning
the guess they make is overtly dependent in a very
strong manner on the nearest neighbors of the ques-
tion in the learning set. Many other generalizers,
while not explicitly local, act locally. For example,
back-propagation behaves somewhat locally (see

Stacked Generalization 255

(Lapedes & Farber, 1988) and the discussion in (Wol-
pert, 1990e) on using back-propagation to try to gen-
eralize the parity input-output function).

Care must be taken whenever one is using such a
local generalizer with a CVPS, especially when one
is using that generalizer by itself (i.e., when that
generalizer is the only level 0 generalizer). The rea-
son is that for several of the i values, the element
Oi2 = O - Oil is one of the elements of O which lie
closest to the level 0 question. Therefore in trying
to determine and correct for the biases the level 0
generalizer will have when generalizing with the full
learning set O, training is being done on learning sets
with different nearby elements from the nearby ele-
ments in the full learning set. However, the gener-
alizing of the local generalizer is strongly dependent
on the set of nearby elements of the learning set,
by hypothesis. Accordingly, the information in the
level 1 learning set can be extremely misleading in
how it implies the level 0 generalizer will err when
answering the level 0 question via the full level 0
learning set.

The natural way to get around this problem is to
have the level 1 input space contain information on
the nearby elements of level 0 learning set. That way
the dependence on the nearby elements of the learn-
ing set is being learned. This is exactly the strategy
that was followed in the example in Section 2 and
the first experiment in Section 3.

There exist other situations where care must be
exercised in using stacked generalization. For ex-
ample, when the level 1 inputs are given by the out-
puts of the level 0 generalizers (as in the first example
in Section 2), poor choice of the level 1 generalizer
can actually result in generalization performance
worse than that of the level 0 generalizers run by
themselves. A full characterization of the desirable
traits of level 1 generalizers for this situation is not
yet in hand, but some broad observations can be
made. In this context, when the level 1 generalizer
is explicitly a surface-fitter, best behavior accrues
(usually) when that generalizer is relatively global,
nonvolatile and smooth, and not overly concerned
with exact reproduction of the level 1 learning set.
For example, in the ongoing work with Lapedes and
Farber mentioned at the beginning of Section 3, the
level 1 input space is only 3-dimensional. Nonethe-
less, the best level 1 generalizers found so far oper-
ate by performing what is essentially a uniformly

eighted average over several hundred of the nearest
neighbors of the level 1 question. An even more
extreme example is any use of stacked generalization
where the level 1 generalizer is a global hyperplane
fitter (e.g., cross-validation).

The following simplistic analysis shows why it is
reasonable that "relatively global, s m o o t h . . . " level

I generalizers should perform well. Imagine we have
a single level 0 generalizer, G, and the level 1 input
space is the guess of G. The level 1 outputs are the
same as the level 0 outputs. For simplicity, have both
the level 0 and level 1 output spaces be discrete-
valued with values {1, 2, 3 s}. Let the
level 1 generalizer be H. Now assume that G is
a fairly good generalizer for the parent function
under consideration. More precisely, assume that in-
dependent of what guess G makes, that guess is cor-
rect exactly 70% of the time. Furthermore, assume
that there is only one way that G can be fooled for
a given guess (i.e., whenever G guesses a particular
t E {1, 2, 3 s}, then the correct guess is always
either t or some other particular number u, E {1, 2,
3 s} which is determined uniquely by t). Now
look at a level 1 input space value x E {1, 2, 3 , . . . ,
s}. Assume there are p > 0 points in the level 1
learning set with this input coordinate. Define P(cr,
fl = p - a) as the probability that a of the p elements
have output x (meaning G guessed correctly) and fl
of them have output vx. P(a , fl) = (.7)~(1 - .7)a
Uo!/(a! fl!)], and is independent of the value of G's
guess (i.e., this probability is independent of the level
1 input value x). Now because G is correct 70% of
the time, in the absence of additional information
one should always guess G's output. However, if
fl > a, then most level 1 generalizers presented with
the question x would guess vx rather than x. (This is
especially true if a = 0, in which case there is no
evidence at all that one should guess anything other
than vx when presented with x.) Assume H has this
behavior. Then ifp is small for all level 1 input space
projections of the level 1 learning set, P(a, fl > a)
is sizable for all those projections of the level 1 learn-
ing set. As a result it is likely that a relatively large
fraction of those level 1 learning set input space pro-
jections have fl > a (i.e., a relatively large fraction
of the times H is presented with a question which
exists in the level 1 learning set that learning set will
lead H to guess vx rather than G's guess, x). There-
fore, using stacked generalization with G feeding the
level 1 generalizer H will lead to worse guesses than
simply using G directly, on average.

This type of problem can occur even if the level
1 input space is multi-dimensional. One simple way
around it is to modify H to implicitly estimate G's
overall guessing accuracy and then make use of
this estimate. To make such an estimate, the level 1
generalizer must examine a large number of the
elements of the level 1 learning set and run a
cross-validation-type procedure over them (i.e.,
measure the fit of the hyperplane {output = G's
guess} over those elements). Preferably, these ex-
amined elements are nearby elements of the level 1
question x, so we do not have to worry about the

256 D. H. Wolpert

fact that in genearl G's guessing accuracy might de-
pend on the value of G's guess (unlike in the toy
argument above). Putting these requirements to-
gether, we get level 1 generalizers which are "rela-
tively global, nonvolatile and smooth, and not overly
concerned with exact reproduction of the level 1
learning set." Such level 1 generalizers can be viewed
as systems which, in effect, boost a (i.e., the number
of times G is observed to be right) and fl (i.e., the
number of times G is observed to be wrong) by ex-
amining many nearby elements of the level 1 learning
set. With a and fl boosted in this way, P(a, fl > a)
becomes small, and our problem is rectified.

Generically, when the level 1 inputs are given by
the outputs of the level 0 generalizers, one wants
those generalizers to (loosely speaking) "span the
space of generalizers" and be "mutually orthogonal"
in that space, For example, imagine we have two
level 0 generalizers, A and B, whose guesses directly
give us the level 1 inputs (see Figure 3). Say A is a
good generalizer for the parent function, whereas B
is not a particularly good generalizer for that func-
tion. Then the only possible advantage of using B
along with A in a stacked generalization structure is
if B adds information not provided by A (i,e., if the
correlation between a correct output and the pair
{A's guess, B's guess} is greater than the correlation
between a correct output and the singlet {A's guess}).
If this is not the case, then B will simply be a red
herring, whose guess is redundant with A's (at best).
It is for these kinds of reasons that the level 0 gen-
eralizers should be "mutually orthogonal."

Similar reasoning justifies the statement that one
wants the level 1 generalizers to "span the space."
It is usually desirable that the level 0 generalizers are
of all "types," and not just simple variations of one
another (e.g., we want surface-fitters, Turing-
machine builders, statistical extrapolators, etc.). In
this way all possible ways of examining the learning
set and trying to extrapolate from it are being ex-
ploited. This is part of what is meant by saying that
the level 0 generalizers should "span the space."
Such spanning is important because stacked gener-
alization is not just a way of determining which level
0 generalizer works best (as in cross-validation), nor
even which linear combination of them works best
(as in Gustafson et al.,'s (1990) scheme); rather
stacked generalization is a means of nonlinearly com-
bining generalizers to make a new generalizer, to try
to optimally integrate what each of the original gen-
eralizers has to say about the learning set. The more
each generalizer has to say (which is not duplicated
in what the other generalizer's have to say), the bet-
ter the resultant stacked generalization.

Another aspect of what "span the space" means
is made clear from the discussion at the very begin-

ning of this subsection concerning the heuristics of
stacked generalization with a single, local general-
izer: we would like the output values of the level 0
generalizers to give us all the salient information con-
cerning the nearby elements in the level 0 learning
set. These generalizers should collectively tell us all
that is important about the level 0 learning set, since
otherwise the mapping from the level 0 space to the
level 1 space has involved a loss of important infor-
mation.

Stacked generalization is often nothing more than
applying a nonlinear transformation to the elements
of the learning set before generalizing from them
(with the level 1 generalizer). (The nonlinear trans-
formation is determined by what level 0 generalizers
are used, how they map to the level 1 space, etc.)
Saying that the generalizers should be "mutually or-
thogonal and span the space" essentially means that
on the one hand that nonlinear transformation
should preserve all the important information in the
learning set, while at the same time, it should not
preserve the redundant and irrelevant information
in the mapping from the level 0 space to the level 1
space.

4.3. Extensions and Variations

There are many interesting implementations of the
basic idea of stacked generalization. First, note that
the idea of having the level 1 output be an error
estimate of a level 0 generalizer G can be applied
even when there are other level 0 generalizers in
addition to G, all feeding into the level 1 input space.
In this case the outputs of the other generalizers are
now providing us with information concerning the
likely error of G when generalizing from O. There
are a number of advantages to such schemes where
the level 1 output is not interpreted as a guess but
rather as an estimate of the error in a guess. For
example, with such a scheme the dimensionality of
the level 1 input space can be reduced by one without
losing any information. (G need no longer feed into
the level 1 space to get information concerning G's
guess--that information comes in when we subtract
the estimated error from G's guess.) Moreover, this
scheme allows us to be "conservative"; we can mul-
tiply the error estimate by a fraction before subtract-
ing it from G's guess. In this way we can directly
control a parameter (the multiplicative fraction)
which determines to what extent we use stacked gen-
eralization and to what extent we simply use G by
itself.

As another interesting implementation, since a
stacked generalization structure is itself a general-
izer, the whole thing can be stacked, and these stack-

S t a c k e d G e n e r a l i z a t i o n 2 5 7

ings can be combined into a network structure. 7 All
the usual net games (e.g., back-propagation) can
then be applied to this network structure. Another
interesting variation is to have the level 0 generalizers
all be similar, relatively dumb systems. An example
of such a system is the following generalizer: "guess
the output value of the point in the learning set whose
input component lies closest to the vector sum of
some fixed input space vector with the question."
Different level 0 generalizers have a different "fixed
input space vector." (If that "fixed input space vec-
tor" = 0, then we recover the traditional nearest
neighbor generalizer.) Nonlinear time-series anal-
ysis, with its "delay embedding" (Casdagli 1989,
Farmer & Sidorowich 1988), is an example of such
a use of stacked generalization with a set of simi-
lar, dumb, level 0 generalizers. 8 Other examples of
this kind of implementation of stacked generaliza-
tion are fan generalizers (Wolpert, 1990e), the ex-
tension of nonlinear time-series analysis to multiple
input dimensions. 9

Other variations are interesting as tools for the-
oretical investigations of stacked generalization. For
example, let N, the number of generalizers, equal n,
the dimension of the level 0 input space, and also
use a partition set in which r = m. Use multiple
stacking and have the level k space's inputs be the
outputs of the N level (k - 1) generalizers, exactly
as in the example in Section 2 (where k = 1). For
this implementation of stacked generalization, when
producing the learning set one level above it,
any generalizer, no matter what level it is working
at, reduces to a single unique function g,,,_~, tak-
ing as argument an n-dimensional question and an
(m - 1)-element learning set whose input space is
n-dimensional. As a result, we can explicitly analyze
the behavior of the whole system as more and more

7 This is essentially what is done in (Wolpert, 1990d), where
a genetic evolution process is used to create a feedback net of
generalizers. (In Wolpert (1990d), the output of this feedback net
of generalizers is fed through yet another generalizer to get the
final guess. This final generalizer has its learning set constructed
so that the original level 0 learning set is reproduced. The learning
sets for all the other generalizers are instead determined by the
evolutionary development of the net. The fitness function for this
evolution is the cross-validation error of the entire system.) One
interesting aspect of such nets of generalizers is that one can have
an "environment generalizer." One (or more) of the nodes in the
net can be reserved for a generalizer whose input-output function
serves the same purpose as input lines in more conventional ar-
chitectures. For example, a one-dimensional input environment,
say of brightness versus angle, is a function. Discretize the in-
dependent variable of this function and feed the resultant numbers
into the input nodes, one number per node, and you get the
conventional way of feeding data into a net. If instead one finds
a learning set which, when generalized (by a surface-fitter say)
gives you the environment function, then you can insert that gen-

eralizer together with that learning set (i.e., that environment
function) as an "environment generalizer" node in the net. With
this scheme different environments do not correspond to different
values on input lines; they correspond to different environment
generalizers at the appropriate nodes of the net. This scheme has
the advantages that it allows the net to actively query its envi-
ronment, and also allows that environment to have arbitrary size.
(Neither of these properties hold for the conventional process of
discretizing that environment and feeding it into input nodes. See
(Wolpert, 1990d) for details.)

In conventional univariate nonlinear time-series analysis, one
is provided a sequence of values of a single-dimensional variable
for a set of times: y (#) , 1 -<] <- m, r some real-valued constant.
To try to generalize from the sequence one assumes that the value
o fy at a time t , y (t) , is determined by its value at a set o f p delays,
y (t - r), y (t - 2r) y(t - pr) . To exploit this assumption
one "embeds" the original sequence as a learning set in a space
with p dimensions of input and one dimension of output. Each
element of this delay-space learning set has its input components
set to the values y (t - r), y (t - 2r) y(t - pr) for some
sequence of p values chosen from the provided time-series, and
the output value of that element is now the value of the point
y(t), again read off of that time-series. One has as many points
in the delay-space learning set as there are sequences of p + 1
consecutive points in the time series. To make a prediction for
y (T) , given the p values y (T - r), y (T - 2r) y(T - pr) ,
one simply generalizes in the delay space (i.e., one guesses what
output should correspond to the delay space question {y(T - r),
y(T - 2r) y (T - pr)}, basing this guess on the delay space
learning set). Viewed in terms of stacked generalization, this
whole embedding procedure is nothing more than a set of level
0 generalizers feeding into a level 1 generalizer. The level 0 learn-
ing set has a one-dimensional input space-- i t is the time series.
The p constituent level 0 generalizers are all predicated on the
assumption that that time series is periodic. They differ from one
another only in what period they assume for the series; one level
0 generalizer assumes period r, one assumes period 2r, etc., all
the way up to an assumption of period pr. (In order, these gen-
eralizers work by predicting y(t) = y(t - r), by predicting y(t -
2r), etc.) The level 1 generalizer is just the delay-space general-
izer. When presented with the question) , (t) , the k-th level 0 gen-
eralizer in conventional nonlinear time-series analysis makes a
guess which is completely independent of all of the elements of
the level 0 learning set except for y (t - kr); quite a dumb gen-
eralizer. From this perspective of stacked genealization, one can
immediately see an obvious way to try to improve the performance
of nonlinear time-series analysis: replace the p level 0 generalizers
which rigidly assume exact periodicity with periods r. 2r
p r with generalizers which are not quite so pig-headed. For ex-
ample, one could instead use generalizers which only assume that
y (t) is se t b y y (t - r), that y (t) is set by y (t - 2r), etc. All these
level 0 generalizers could then use a conventional generalizer
(e.g., a metric-based HERBIE) along with the entire (!) time-
series to estimate h o w y (t) is set by y (t - r), how y(t) is set by
y(t - 2r), etc. Under this scheme, instead of simply having the
k-th level 0 generalizer predict e x a c t l y y(t - kr) when provided
with the question y (t) , that generalizer guesses what answer should
correspond to y (t) b a s i n g the guess on y(t - kr).

It's interesting to examine fan generalizers from the point of
view of the discussion earlier on "spanning the space of gener-
alizers." Although producing the inputs of the level 1 learning set
exclusively from the outputs of the level 0 learning set, fan gen-
eralizers nonetheless preserve all the "'salient" information about
the input space geometry of the level 0 learning set. They do this
via the fan itself, which consists entirely of level 0 input space
information and is crucial to the construction of the input com-
ponents of the elements of the level 1 learning set.

258 D. H. Wolpert

stacking levels are added. For example, we can con-
sider the case where each level has a single learning
set, and all such learning sets feed serially into the
set one level above, all according to the exact same
rules. (Such a structure is a multilayer net, where
each node is a learning set, there exists one node per
layer, and information is fed from one node to the
next via the N generalizers.) For such a scenario the
successive levels act upon the learning set like suc-
cessive iterations of an iterated map. Therefore, the
usual nonlinear analysis questions apply: when does
one get periodic behavior? When does one get cha-
otic behavior? What are the dimensions of the at-
tractors?, etc. Once answered, such questions would
presumably help determine how many levels to stack
such a system.

Yet another interesting theoretical scenario arises
when not only can all the guessing mappings taking
one learning set to the next be reduced to a single
function gm-~, but so can the guessing for questions
outside of the learning set(s). This full reduction usu-
ally does not obtain due to the fact that the cardi-
nality of Oi~ is less than the cardinality of the full O,
and therefore a question ~ O goes through a differ-
ent g than Oi2 (g,, vs. g,,_ ~). (The same conundrum
arises when trying to provide theoretical justifica-
tions for techniques like cross-validation.) One ob-
vious way around this difficulty is to have g,, fixed
by g,,_~. For example, one could define g,,,(@; q) -=
(g,,,-~(Oi~; q))l~l, where the O~ are chosen from
the CVPS of O. (The averaging can either be done
with a uniform weighting over all m numbers
g,,_~(O~; q), or those numbers might be weighted
according to the error value Igm-i(O/t; input com-
ponent of Oi2) - (output component of Oi2)1.) In
this way an analysis of the generalizing behavior
of stacked generalization and its relation to the
constituent generalizers could be cast in terms
of the behavior of a single function.

Finally, it is interesting to note that some authors
have investigated what amounts to stacked gener-
alization in the context of improving learning (i.e.,
improving reproduction of the learning set) rather
than improving generalization. In such a context, Ojj
can be allowed to run over the entire learning set.
An example of such a scheme is investigated in (Dep-
pisch et al., 1990). The level 1 generalizer used in
Deppisch et al. (1990) is back-propagation on stan-
dard feed-forward neural nets, and the level 1 output
space is the error of the level 0 genearlizer. The level
1 input space is identical to the level 0 input space.
The level 0 generalizer is also back-propagation on
standard feed-forward neural nets, only restricted to
have a nonzero resolution in its output. Evidence is
presented in Deppisch et al. (1990) indicating that
this scheme achieves much lower learning error than

a single back propagation generalizer, and does so
in much less time.

It should be noted however that although a par-
tition set of the type implicitly used in Deppisch
et al. (1990) might help learning, it entails some ma-
jor disadvantages as far as generalization is con-
cerned. For example, if this partition set is used when
there is no noise, and if one of the level 0 generalizers
guesses perfectly for questions on which it has al-
ready been trained, then, as far as the level 1 gen-
eralizer can tell, that level 0 surface-fitter always
guesses perfectly for all questions. Accordingly, any
reasonable level 1 generalizer will simply say that
one should use that level 0 generalizer directly, and
ignore any other level 0 information. In general,
when using this partition set one is not "generalizing
how to generalize" but rather "generalizing how to
learn," in that the level 1 space contains information
on how well the level 0 generalizers learn, but not
on how well they generalize.

5. CONCLUSION

Stacked generalization is a generic term referring to
any scheme for feeding information from one set of
generalizers to another before forming the final
guess. The distinguishing feature of stacked gener-
alization is that the information fed up the net of
generalizers comes from multiple partitionings of the
original learning set, all of which split up that learn-
ing set into two subsets. Each such pair of subsets is
then used to glean information about the biases of
the generalizing behavior of the original general-
izer(s) with respect to the learning set. (Note that
this is not the same as the biases of the learning
behavior of the original generalizer(s). It is this bias
information which is fed up the net; stacked gener-
alization is a means of estimating and correcting for
the biases of the constituent generalizer(s) with re-
spect to the provided learning set.

Stacked generalization can be used with a single
generalizer, in which case it is explicitly a scheme for
estimating and correcting the errors of that gener-
alizer. The surface-fitting experiments reported here
indicate that it can be quite effective at correcting
those errors. When used with multiple generalizers
all of which feed into a single back-end generalizer,
certain special cases of stacked generalization are
exactly equivalent to cross-validation, certain are ex-
actly equivalent to forming a linear combination of
the guesses of the constituent generalizers, etc. All
such special cases correspond to the assumption of
a particular (invariably rather dumb) back-end gen-
eralizer. As with any other generalizing problem, use
of more sophisticated generalizers should be ex-
pected to give improved results. This is indeed the

Stacked Generalization 259

case, according to the NETtalk-type experiments re-
ported here and according to other experiments re-
ported elsewhere. The conclusion is that for many
generalization problems stacked generalization can
be expected to reduce the generalization error rate.

REFERENCES

Anshelevich, V. V., Amarikian, B. R., Lukashin, A. V., & Frank-
Kamenetskii, M. D. (1989). On the ability of neural networks
to perform generalization by induction. Biological Cybernetics,
61, 125-128.

Carterette, E. C., & Jones, M. H. (1974). Informal speech. Los
Angeles: University of California Press.

Casdagli, M. (1989). Non-linear prediction of chaotic time-series.
Physica D, 35, 335-356.

Dietterich, T. G. (1990). Machine learning. Annual Review of
Computer Science, 4, 255-306.

Deppisch, J., Bauer, H. V., & Geisel, T. (1990). Hierarchical
training of neural networks and prediction of chaotic time series.
Frankfurt: Institut fur Theoretische Physik und SFB Nicktli-
neare Dynamik, Universitat Frankfurt.

Efron, B. (1979). Computers and the theory of statistics: thinking
the unthinkable. SlAM REVIEW, 21,460-480.

Farmer, J. D. & Sidorowich, J. J. (1988). Exploiting chaos to
predict the future and reduce noise. (Los Alamos, NM, report
LA - U R-88-901).

Gustafson, S., Little, G., & Simon, D. (1990). Neural network
for interpolation and extrapolation. (Report number 1294-40),
Dayton, OH: The University of Dayton, Research Institute.

Holland, J. (1975). Adaptation in natural and artificial systems.
Ann Arbor, MI: University of Michigan Press.

Lapedes, A., & Farber, R. (1988). How neural nets work, Pro-
ceedings of the 187 IEEE Denver conference on neural net-
works. In D. Z. Anderson (Ed.), Neural information
processing systems, American Institute of Physics.

Li, Ker-Chau (1985). From Stein's unbiased risk estimates to the
method of generalized cross-validation. The Annals of Statis-
tics, 13, 1352-1377.

Morozov, V. A. (1984). Methods for solving incorrectly posed
problems. New York, NY: Springer-Verlag.

Omohundro, S. (1987). Efficient algorithms with neural network
behavior. (Report UIUCSCS-R-87-1331). Urbana, IL: Uni-
versity of Illinois at Urbana-Champaign Computer Science
Department.

Poggio, T., & staff, MIT AI Lab (1988). MIT progress in under-
standing images. In L. Bauman (Ed.), Proceedings of the image
understanding workshop. McLean, VA, 111-129.

Quinlan, 3. R. (1986). Induction of decision trees. Machine Learn-
ing, 1, 81-106.

Rissanen, J. (1986). Stochastic complexity and modeling. The
Annals of Statistics, 14, 1080-1100.

Rumelhart, D. E., & McClelland, J. L. (1986). Explorations in
the microstructure of cognition, volumes I and I1. Cambridge,
MA: MIT Press.

Schulz, G. E., et al. (1974). Comparison of predicted and exper-
imentally determined secondary structure of adenyl kinase.
Nature, 250, 140-142.

Sejnowski, T. J., & Rosenberg, C. R. (1988). NETtalk: A parallel
network that learns to read aloud. (Report No. JHU/EECS-
86/01). Johns Hopkins University, Baltimore, MD, Electrical
Engineering and Computer Science Dept.

Stanfill, C., & Waltz, D. (1986). Toward memory-based reason-
ing. Communications of the A CM, 29, 1213-1228.

Stone, M. (1977). Asymptotics for and against cross-validation,
Biometrika, 64, 29-35.

Valiant, L. G. (1984). A theory of the learnable. Communications
of the ACM, 27, 1134-1142.

Wolpert, D. (1989). A benchmark for how well neural nets gen-
eralize. Biological Cybernetics, 61,303-313.

Wolpert, D. (1990a). The relationship between Occam's razor and
convergent guess. Complex Systems, 4, 319-368.

Wolpert, D. (1990b). Constructing a generalizer superior to NET-
talk via a mathematical theory of generalization. Neural Net-
works, 3,445-452.

Wolpert, D. (1990c). A mathematical theory of generalization:
Part I. Complex Systems, 4, 151-200.

Wolpert, D. (1990d). A mathematical theory of generalization:
Part II. Complex Systems, 4, 200-249.

Wolpert, D. (1990e). Improving the performance of generalizers
via time-series-like preprocessing of the learning set. (Report
No. LA-UR-90-401), Los Alamos National Laboratory, NM.

Xiangdong & Zhaoxuan (1990). Nonlinear time series modeling
by self-organizing methods. Report from the Department of
mechanics, Peking University, Beijing, PRC.

