Dropping Intensity Predictors

Mike Mahoney true
2021-01-05

Evaluation Results

Last iteration of these models: 2020-12-29

Change Summary

RF (ranger) GBM (LightGBM) SVM (kernlab) Ensemble (model weighted) Ensemble (RMSE weighted)
RMSE 38.088 34.715 36.623 35.530 35.880
MBE -1.991 -1.160 -3.050 -1.170 -2.064
R2 0.732 0.775 0.753 0.765 0.762

Bootstrapping Results

Across 1000 bootstrap iterations, our ensemble model had a mean RMSE of 36.6 \(\pm\) 0.422.

RMSE Distribution

Plot Errors

Validation Results

RMSE Min Median Max
Rf 34.382 39.488 47.609
Lgb 30.983 38.601 46.882
Svm 32.896 38.892 45.863
Ensemble 31.947 38.436 46.212
R2 Min Median Max
rf 0.587 0.699 0.780
lgb 0.593 0.710 0.806
svm 0.609 0.705 0.779
ensemble 0.610 0.715 0.796

Metadata

Ensembles

      lgb        rf       svm 
0.3422873 0.3205030 0.3372097 

Call:
lm(formula = agb_mgha ~ rf_pred * lgb_pred * svm_pred, data = pred_values)

Residuals:
     Min       1Q   Median       3Q      Max 
-123.787  -21.382   -1.536   18.213  187.790 

Coefficients:
                            Estimate Std. Error t value Pr(>|t|)    
(Intercept)               -2.148e+00  1.034e+00  -2.077 0.037780 *  
rf_pred                    7.713e-03  7.884e-02   0.098 0.922070    
lgb_pred                   7.954e-01  9.116e-02   8.725  < 2e-16 ***
svm_pred                   2.356e-01  8.937e-02   2.636 0.008388 ** 
rf_pred:lgb_pred          -1.347e-03  7.098e-04  -1.897 0.057802 .  
rf_pred:svm_pred           2.500e-03  6.903e-04   3.622 0.000293 ***
lgb_pred:svm_pred         -1.308e-03  7.639e-04  -1.712 0.086918 .  
rf_pred:lgb_pred:svm_pred  9.097e-07  2.246e-06   0.405 0.685474    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 38.47 on 12992 degrees of freedom
Multiple R-squared:  0.7125,    Adjusted R-squared:  0.7124 
F-statistic:  4600 on 7 and 12992 DF,  p-value: < 2.2e-16

\(n\) and \(p\)

Component Models

$num.trees
[1] 300

$mtry
[1] 2

$min.node.size
[1] 5

$replace
[1] FALSE

$splitrule
[1] "variance"

$sample.fraction
[1] 0.2

$formula
agb_mgha ~ .
$learning_rate
[1] 0.1

$nrounds
[1] 50

$num_leaves
[1] 5

$extra_trees
[1] FALSE

$min_data_in_bin
[1] 13

$bagging_fraction
[1] 0.3

$feature_fraction
[1] 0.8

$lambda_l1
[1] 9

$lambda_l2
[1] 9

$force_col_wise
[1] TRUE
$x
agb_mgha ~ .

$kernel
[1] "laplacedot"

$type
[1] "eps-bsvr"

$kpar
$kpar$sigma
[1] 0.015625


$C
[1] 4

$epsilon
[1] 0.0625